Mathematik für Informatiker

von: Manfred Brill

Carl Hanser Fachbuchverlag, 2005

ISBN: 9783446400542 , 454 Seiten

2. Auflage

Format: PDF, OL

Kopierschutz: Wasserzeichen

Windows PC,Mac OSX geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Online-Lesen für: Windows PC,Mac OSX,Linux

Preis: 23,99 EUR

  • Verlieb dich nie in deinen Chef
    Julia Extra Band 0316 - So heiss küsst nur ein Playboy / Sinnliche Erpressung aus Leidenschaft / Verführt von einem Prinzen / Nur dieser eine Tanz? /
    Einmal ist nicht genug!
    Die Nanny und der römische Millionär
    Tiffany hot & sexy Band 14 - Spionin in Samt und Seide / Masken der Lust / Trau dich, nimm mich /
    Julia Collection Band 23 - Stürmische Romanze auf den Bahamas / Goldene Sonne über der Karibik / Pelican Cay - Insel der Liebe /
  • Collection Baccara Band 0292 - Absolut verrückt nach dir / Nur eine bedeutungslose Affäre? / Heirate niemals in Las Vegas! /
    Quellen Der Lust - Die Mätresse des Prinzen / Quellen der Lust /
    Der Graf von Castelfino
    Julia Extra Band 0317 - Mit dir auf unserer Liebesinsel / Feuriger Flirt in Italien / Hochzeit mit einem spanischen Milliardär / Heiss wie die Sonne Griechenlands /

     

     

     

     

     

 

Mehr zum Inhalt

Mathematik für Informatiker


 

Kapitel 9 Vektoralgebra (S. 221)

Motivation

Vektoren im anschaulichen dreidimensionalen Raum und ihre Verallgemeinerung im Rn bilden die Basis f ür viele mathematische Modelle auf dem Computer. Es ist kein Zufall, dass Felder zu den ersten Datenstrukturen gehören, die Sie im Informatikstudium kennen lernen. Das Skalar- und das Vektorprodukt, die Parameterdarstellung von Geraden und Ebenen im Rn sind elementare Grundlagen. Die in diesem Kapitel eingeführten Begriffe bilden die anschauliche Basis für den im folgenden Kapitel eingeführten abstrakten Vektorraum.

9.1 Geometrische Vektoren

Physikalische Werte wie Flächeninhalt, Längen, Masse oder Temperatur sind durch die Angabe ihres Betrages vollständig beschrieben. Vektorielle Größen dagegen benötigen zusätzlich die Angabe einer Richtung. Beispielsweise wird die Windbewegung als 10 km/h Südost, durch den Betrag der Geschwindigkeit und eine Richtung angegeben. Anschaulich werden diese Größen durch Pfeile dargestellt, die Richtung des Vektors entspricht der Pfeilrichtung. In der zweidimensionalen Ebene kann ein Vektor als ein geordnetes Paar von Punkten angesehen werden; der Vektor verbindet einen Anfangs- und einen Endpunkt. Um Vektoren und Skalare im Text zu unterscheiden, werden Vektoren in diesem Buch immer als fett gedruckte Kleinbuchstaben x geschrieben. Die auftretenden Zahlen werden Skalare genannt und mit kleinen griechischen Buchstaben gekennzeichnet. Punkte werden mit Großbuchstaben bezeichnet

Motivation

Vektoren im anschaulichen dreidimensionalen Raum und ihre Verallgemeinerung im Rn bilden die Basis für viele mathematische Modelle auf dem Computer. Es ist kein Zufall, dass Felder zu den ersten Datenstrukturen gehören, die Sie im Informatikstudium kennen lernen. Das Skalar- und das Vektorprodukt, die Parameterdarstellung von Geraden und Ebenen im Rn sind elementare Grundlagen. Die in diesem Kapitel eingeführten Begriffe bilden die anschauliche Basis für den im folgenden Kapitel eingeführten abstrakten Vektorraum.

9.1 Geometrische Vektoren

Physikalische Werte wie Flächeninhalt, Längen, Masse oder Temperatur sind durch die Angabe ihres Betrages vollständig beschrieben. Vektorielle Größen dagegen benötigen zusätzlich die Angabe einer Richtung. Beispielsweise wird die Windbewegung als 10 km/h Südost, durch den Betrag der Geschwindigkeit und eine Richtung angegeben. Anschaulich werden diese Größen durch Pfeile dargestellt, die Richtung des Vektors entspricht der Pfeilrichtung. In der zweidimensionalen Ebene kann ein Vektor als ein geordnetes Paar von Punkten angesehen werden; der Vektor verbindet einen Anfangs- und einen Endpunkt. Um Vektoren und Skalare im Text zu unterscheiden, werden Vektoren in diesem Buch immer als fett gedruckte Kleinbuchstaben x geschrieben. Die auftretenden Zahlen werden Skalare genannt und mit kleinen griechischen Buchstaben gekennzeichnet. Punkte werden mit Großbuchstaben bezeichnet.