Queueing Theory for Telecommunications - Discrete Time Modelling of a Single Node System

von: Attahiru Sule Alfa

Springer-Verlag, 2010

ISBN: 9781441973146 , 238 Seiten

Format: PDF, OL

Kopierschutz: Wasserzeichen

Windows PC,Mac OSX geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Online-Lesen für: Windows PC,Mac OSX,Linux

Preis: 96,29 EUR

Mehr zum Inhalt

Queueing Theory for Telecommunications - Discrete Time Modelling of a Single Node System


 

Preface

6

Acknowledgements

8

Contents

9

Chapter 1

13

Introduction

13

1.1 Introduction

13

1.2 A single node queue

14

1.3 A tandem queueing systems

16

1.4 A network system of queues

17

1.5 Queues in Communication networks

18

1.6 Why are queueing systems of interest?

20

1.7 Discrete time vs Continuous time analyses

20

1.7.1 Time

21

Chapter 2

23

Markov Processes

23

2.1 Introduction

23

2.2 Stochastic Processes

23

2.3 Markov Processes

25

2.4 Discrete Time Markov Chains

26

2.4.1 Examples

27

2.4.2 State of DTMC at arbitrary times

30

2.4.2.1 Example

30

2.4.2.2 Chapman Kolmogorov Equations

32

2.4.3 Classification of States

33

2.4.4 Classification of Markov Chains

35

2.5 First Passage Time

37

2.5.1 Examples

40

2.5.2 Some Key Information Provided by First Passage

41

2.5.3 Example

42

2.5.4 Mean first recurrence time

43

2.6 Absorbing Markov Chains

43

2.6.1 Characteristics of an absorbing Markov chain

44

2.7 Transient Analysis

46

2.7.1 Direct Algebraic Operations

47

2.7.1.1 Naive repeated application of P

47

2.7.1.2 Matrix decomposition approach

47

2.7.2 Transient Analysis Based on the z-Transform

48

2.8 Limiting Behaviour of Markov Chains

49

2.8.1 Ergodic Chains

49

2.8.2 Non-Ergodic Chains

50

2.8.3 Mean First Recurrence Time and Steady State Distributions

51

2.9 Numerical Computations of the Invariant Vectors

51

2.9.1 Finite State Markov Chains

51

2.9.1.1 Direct Methods

53

2.9.1.2 Iterative Methods:

55

2.9.2 Bivariate Discrete Time Markov Chains

57

2.9.3 Computing Stationary Distribution for the Finite Bivariate DTMC

58

2.9.4 Special Finite State DTMC

61

2.9.5 Infinite State Markov Chains

63

2.9.6 Some Results for Infinite State Markov Chains with Repeating Structure

63

2.9.7 Matrix-Analytical Method for Infinite State Markov Chains

65

2.9.7.1 The GI/M/1 Type

66

2.9.7.2 Key Measures

69

2.9.7.3 Computing matrix R

69

2.9.7.4 Some Special Structures of the Matrix R often Encountered

71

2.9.7.5 The M/G/1 Type:

71

2.9.7.6 Stationary distribution

72

2.9.7.7 Computing Matrix G

73

2.9.7.8 Some Special Structures of the Matrix G often Encountered

76

2.9.7.9 QBD

77

2.9.7.10 Computing the matrices R and G

80

2.9.7.11 Some Special Structures of the Matrix R and the matrix G

81

2.9.8 Other special QBDs of interest

81

2.9.8.1 Level-dependent QBDs:

81

2.9.8.2 Tree structured QBDS

82

2.9.9 Re-blocking of transition matrices

84

2.9.9.1 The non-skip-free M/G/1 type

84

2.9.9.2 The non-skip-free GI/M/1 type

86

2.9.9.3 Time-inhomogeneous Discrete Time Markov Chains

88

2.9.9.4 Time-inhomogeneous and spatially-homogeneous QBD

89

2.10 Software Tools for Matrix-Analytic Methods

90

Chapter 3

91

Characterization of Queueing Systems

91

3.1 Introduction

91

3.1.1 Factors that affect the measures

94

3.2 Arrival and Service Processes

95

3.2.1 Renewal Process

97

3.2.1.1 Number of renewals

99

3.3 Special Arrival and Service Processes in Discrete Time

99

3.3.1 Geometric Distribution

99

3.3.1.1 Lack of Memory Property:

101

3.3.2 Phase Type Distribution

101

3.3.2.1 Two very important closure properties of phase type distributions:

104

3.3.2.2 Minimal coefficient of variation of a discrete PH distribution

104

3.3.2.3 Examples of special phase type distributions

105

3.3.2.4 Analogy between PH and Geometric distributions

105

3.3.2.5 Phase Renewal Process:

106

3.3.3 The infinite phase distribution (IPH)

107

3.3.4 General Inter-event Times

108

3.3.4.1 Remaining Time Representation

108

3.3.4.2 Elapsed Time Representation

108

3.3.5 Markovian Arrival Process

109

3.3.5.1 Platoon Arrival Process (PAP)

111

3.3.5.2 Batch Markovian Arrival Process (BMAP)

113

3.3.6 Marked Markovian Arrival Process

113

3.3.7 Semi Markov Processes

114

3.3.8 Data Fitting for PH and MAP

114

Chapter 4

116

Single Node Queuing Models

116

4.1 Introduction

116

4.2 Birth-and-Death Process

117

4.3 Discrete time B-D Process

118

4.4 Geo/Geo/1 Queues

119

4.4.1 Algebraic Approach

120

4.4.2 Transform Approach

120

4.4.3 Matrix-geometric Approach

121

4.4.4 Performance Measures

122

4.4.4.1 Mean number in system:

122

4.4.4.2 Mean number in queue:

123

4.4.4.3 Waiting time in the queue:

123

4.4.4.4 Waiting time in system:

124

4.4.4.5 Duration of a Busy Period:

125

4.4.4.6 Number Served During a Busy Period:

127

4.4.4.7 Age Process

128

4.4.4.8 Workload:

128

4.4.5 Discrete time equivalent of Little’s Law:

129

4.4.6 Geo/Geo/1/K Queues

129

4.4.6.1 Departure Process

132

4.5 Geo/G/1 Queues

132

4.5.1 Supplementary Variable Technique

133

4.5.1.1 Transform Approach

133

4.5.1.2 Matrix-analytic approach

134

4.5.2 Imbedded Markov Chain Approach

136

4.5.2.1 Distribution of number in the system

137

4.5.2.2 Waiting Time:

137

4.5.2.3 Workload:

138

4.5.2.4 Age Process:

139

4.5.2.5 Busy Period:

139

4.5.3 Geo/G/1/K Queues

140

4.6 GI/Geo/1 Queues

141

4.6.1 Supplementary Variable Technique

141

4.6.1.1 Matrix-analytic approach

141

4.6.2 Imbedded Markov Chain Approach

143

4.6.2.1 Matrix-geometric approach:

144

4.6.2.2 Transform approach

144

4.6.3 GI/Geo/1/K Queues

146

4.7 Geo/PH/1 Queues

147

4.7.1 Waiting Times

148

4.8 PH/Geo/1 Queues

149

4.8.1 Waiting Times

150

4.9 PH/PH/1 Queues

151

4.9.1 Examples

153

4.9.1.1 A Numerical Example

153

4.9.1.2 Another Example

154

4.9.2 Waiting Time Distirbution

155

4.9.2.1 Workload

157

4.9.2.2 Age Process

157

4.9.3 PH/PH/1 Queues at points of events

158

4.10 GI/G/1 Queues

163

4.10.1 The (RT,RT) representation for the GI/G/1 queue

163

4.10.2 New algorithm for the GI/G/1 system

165

4.10.3 The (ET,ET) representation for the GI/G/1 queue

167

4.11 GI/G/1/K Queues

169

4.11.1 Queue length

171

4.11.2 Waiting times

171

4.11.3 Model II

173

4.12 MAP/PH/1 Queues

176

4.13 Batch Queues

176

4.13.1 GeoX/Geo/1 queue

176

4.13.1.1 Transform Approach

177

4.13.1.2 Examples

178

4.13.1.3 Matrix-analytic Approach

179

4.13.2 Geo/GeoY /1 queue

179

Chapter 5

181

Advance Single Node Queuing Models

181

5.1 Multiserver Queues

181

5.1.1 Geo/Geo/k Systems

181

5.1.1.3 An Example

186

5.1.1.4 Waiting Times

187

5.1.2 GI/Geo/k Systems

189

5.1.2.1 Using MAM Same as using supplementary variables

189

k. 5.1.2.2 Numerical Example

191

5.1.3 PH/PH/k Systems

192

5.1.4 Geo/D/k Systems

194

5.1.5 MAP/D/k Systems

197

5.1.6 BMAP/D/k Systems

197

5.2 Vacation Queues

197

5.2.1 Geo/G/1 vacation systems

198

5.2.1.1 Single vacation system

199

5.2.1.2 Multiple vacations system

201

5.2.2 GI/Geo/1 vacation systems

204

5.2.3 MAP/PH/1 vacation systems

205

5.2.3.1 Exhaustive single vacation:

205

5.2.3.2 Stationary Distribution:

208

5.2.3.3 Example of the Geo/Geo/1 vacation:

208

5.2.3.4 Exhaustive multiple vacations

209

5.2.4 MAP/PH/1 vacation queues with number limited service

210

5.2.5 MAP/PH/1 vacation queues with time limited service

212

5.2.6 Random Time Limited Vacation Queues/Queues with Server Breakdowns and Repairs

213

5.3 Priority Queues

215

5.3.1 Geo/Geo/1 Preemptive

216

5.3.1.1 Stationary Distribution

218

5.3.2 Geo/Geo/1 Non-preemptive

223

5.3.2.1 Stationary Distribution

225

5.3.3 MAP/PH/1 Preemptive

226

5.3.3.1 Stationary Distribution

228

5.3.4 MAP/PH/1 Non-preemptive

231

5.4 Queues with Multiclass of Packets

235

5.4.1 Multiclass systems – with FCFS the MMAP[K]/PH[K]/1

235

5.4.1.1 Stationary distribution and waiting times

236

5.4.2 Multiclass systems – with LCFS the MMAP[K]/PH[K]/1

237

5.4.2.1 Stability conditions

238

5.4.2.2 Performance measures

239

References

242

Index

247