Radar Remote Sensing of Urban Areas

von: Uwe Soergel

Springer-Verlag, 2010

ISBN: 9789048137510 , 278 Seiten

Format: PDF, OL

Kopierschutz: Wasserzeichen

Windows PC,Mac OSX geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Online-Lesen für: Windows PC,Mac OSX,Linux

Preis: 96,29 EUR

Mehr zum Inhalt

Radar Remote Sensing of Urban Areas


 

Preface

6

Contents

8

1 Review of Radar Remote Sensing on Urban Areas

17

1.1 Introduction

17

1.2 Basics

18

1.2.1 Imaging Radar

19

1.2.2 Mapping of 3d Objects

24

1.3 2d Approaches

27

1.3.1 Pre-processing and Segmentation of Primitive Objects

27

1.3.2 Classification of Single Images

29

1.3.2.1 Detection of Settlements

30

1.3.2.2 Characterization of Settlements

31

1.3.3 Classification of Time-Series of Images

32

1.3.4 Road Extraction

33

1.3.4.1 Recognition of Roads and of Road Networks

33

1.3.4.2 Benefit of Multi-aspect SAR Images for Road Network Extraction

35

1.3.5 Detection of Individual Buildings

36

1.3.6 SAR Polarimetry

36

1.3.6.1 Basics

37

1.3.6.2 SAR Polarimetry for Urban Analysis

39

1.3.7 Fusion of SAR Images with Complementing Data

40

1.3.7.1 Image Registration

40

1.3.7.2 Fusion for Land Cover Classification

41

1.3.7.3 Feature-Based Fusion of High-Resolution Data

42

1.4 3d Approaches

42

1.4.1 Radargrammetry

43

1.4.1.1 Single Image

43

1.4.1.2 Stereo

44

1.4.1.3 Image Fusion

45

1.4.2 SAR Interferometry

45

1.4.2.1 InSAR Principle

45

1.4.2.2 Analysis of a Single SAR Interferogram

48

1.4.2.3 Multi-image SAR Interferometry

50

1.4.2.4 Multi-aspect InSAR

50

1.4.3 Fusion of InSAR Data and Other Remote Sensing Imagery

52

1.4.4 SAR Polarimetry and Interferometry

53

1.5 Surface Motion

54

1.5.1 Differential SAR Interferometry

54

1.5.2 Persistent Scatterer Interferometry

55

1.6 Moving Object Detection

56

References

57

2 Rapid Mapping Using Airborne and Satellite SAR Images

64

2.1 Introduction

64

2.2 An Example Procedure

66

2.2.1 Pre-processing of the SAR Images

66

2.2.2 Extraction of Water Bodies

67

2.2.3 Extraction of Human Settlements

68

2.2.4 Extraction of the Road Network

69

2.2.5 Extraction of Vegetated Areas

71

2.2.6 Other Scene Elements

72

2.3 Examples on Real Data

72

2.3.1 The Chengdu Case

73

2.3.2 The Luojiang Case

76

2.4 Conclusions

79

References

81

3 Feature Fusion Based on Bayesian Network Theory for Automatic Road Extraction

84

3.1 Introduction

84

3.2 Bayesian Network Theory

85

3.3 Structure of a Bayesian Network

87

3.3.1 Estimating Continuous Conditional Probability Density Functions

91

3.3.2 Discrete Conditional Probabilities

94

3.3.3 Estimating the A-Priori Term

95

3.4 Experiments

96

3.5 Discussion and Conclusion

97

References

100

4 Traffic Data Collection with TerraSAR-Xand Performance Evaluation

102

4.1 Motivation

102

4.2 SAR Imaging of Stationary and Moving Objects

103

4.3 Detection of Moving Vehicles

108

4.3.1 Detection Scheme

109

4.3.2 Integration of Multi-temporal Data

111

4.4 Matching Moving Vehicles in SAR and Optical Data

113

4.4.1 Matching Static Scenes

113

4.4.2 Temporal Matching

115

4.5 Assessment

116

4.5.1 Accuracy of Reference Data

116

4.5.2 Accuracy of Vehicle Measurements in SAR Images

118

4.5.3 Results of Traffic Data Collectionwith TerraSAR-X

118

4.6 Summary and Conclusion

122

References

122

5 Object Recognition from Polarimetric SAR Images

124

5.1 Introduction

124

5.2 SAR Polarimetry

126

5.3 Features and Operators

132

5.4 Object Recognition in PolSAR Data

139

5.5 Concluding Remarks

144

References

145

6 Fusion of Optical and SAR Images

147

6.1 Introduction

147

6.2 Comparison of Optical and SAR Sensors

149

6.2.1 Statistics

150

6.2.2 Geometrical Distortions

151

6.3 SAR and Optical Data Registration

152

6.3.1 Knowledge of the Sensor Parameters

152

6.3.2 Automatic Registration

154

6.3.3 A Framework for SAR and Optical Data Registration in Case of HR Urban Images

155

6.3.3.1 Rigid Deformation Computation and Fourier--Mellin Invariant

155

6.3.3.2 Polynomial Deformation

157

6.3.3.3 Results

158

6.4 Fusion of SAR and Optical Data for Classification

158

6.4.1 State of the Art of Optical/SAR Fusion Methods

158

6.4.2 A Framework for Building Detection Based on the Fusion of Optical and SAR Features

161

6.4.2.1 Method Principle

161

6.4.2.2 Best Rectangular Shape Detection

162

6.4.2.3 Complex Shape Detection

163

6.4.2.4 Results

164

6.5 Joint Use of SAR Interferometry and Optical Data for 3D Reconstruction

165

6.5.1 Methodology

165

6.5.2 Extension to the Pixel Level

168

6.6 Conclusion

171

References

171

7 Estimation of Urban DSM from Mono-aspect InSAR Images

174

7.1 Introduction

174

7.2 Review of Existing Methods for Urban DSM Estimation

176

7.2.1 Shape from Shadow

177

7.2.2 Approximation of Roofs by Planar Surfaces

177

7.2.3 Stochastic Geometry

178

7.2.4 Height Estimation Based on Prior Segmentation

178

7.3 Image Quality Requirements for Accurate DSM Estimation

179

7.3.1 Spatial Resolution

179

7.3.2 Radiometric Resolution

181

7.4 DSM Estimation Based on a Markovian Framework

182

7.4.1 Available Data

182

7.4.2 Global Strategy

182

7.4.3 First Level Features

184

7.4.4 Fusion Method: Joint Optimization of Class and Height

185

7.4.4.1 Definition of the Region Graph

185

7.4.4.2 Fusion Model: MaximumA Posteriori Model

186

7.4.4.3 Optimization Algorithm

191

7.4.4.4 Results

191

7.4.5 Improvement Method

192

7.4.6 Evaluation

194

7.5 Conclusion

196

References

197

8 Building Reconstruction from Multi-aspect InSAR Data

199

8.1 Introduction

199

8.2 State-of-the-Art

200

8.2.1 Building Reconstruction Through Shadow Analysis from Multi-aspect SAR Data

200

8.2.2 Building Reconstruction from Multi-aspect Polarimetric SAR Data

201

8.2.3 Building Reconstruction from Multi-aspect InSAR Data

201

8.2.4 Iterative Building ReconstructionUsing Multi-aspect InSAR Data

202

8.3 Signature of Buildings in High-Resolution InSAR Data

202

8.3.1 Magnitude Signature of Buildings

203

8.3.2 Interferometric Phase Signature of Buildings

206

8.4 Building Reconstruction Approach

209

8.4.1 Approach Overview

209

8.4.2 Extraction of Building Features

211

8.4.2.1 Segmentation of Primitives

211

8.4.2.2 Extraction of Building Parameters

212

8.4.2.3 Filtering of Primitive Objects

213

8.4.2.4 Projection and Fusion of Primitives

214

8.4.3 Generation of Building Hypotheses

214

8.4.3.1 Building Footprint

215

8.4.3.2 Building Height

217

8.4.4 Post-processing of Building Hypotheses

218

8.4.4.1 Ambiguity of the Gable-Roofed Building Reconstruction

218

8.4.4.2 Correction of Oversized Footprints

221

8.5 Results

223

8.6 Conclusion

224

References

225

9 SAR Simulation of Urban Areas: Techniques and Applications

227

9.1 Introduction

227

9.2 Synthetic Aperture Radar Simulation Development and Classification

228

9.2.1 Development of the SAR Simulation

228

9.2.2 Classification of SAR Simulators

229

9.3 Techniques of SAR Simulation

231

9.3.1 Ray Tracing

231

9.3.2 Rasterization

231

9.3.3 Physical Models Used in Simulations

232

9.4 3D Models as Input Data for SAR Simulations

234

9.4.1 3D Models for SAR Simulation

234

9.4.2 Numerical and Geometrical Problems Concerning the 3D Models

234

9.5 Applications of SAR Simulations in Urban Areas

235

9.5.1 Analysis of the Complex Radar Backscattering of Buildings

235

9.5.2 SAR Data Acquisition Planning

237

9.5.3 SAR Image Geo-referencing

237

9.5.4 Training and Education

238

9.6 Conclusions

240

References

241

10 Urban Applications of Persistent Scatterer Interferometry

244

10.1 Introduction

244

10.2 PSI Advantages and Open Technical Issues

248

10.3 Urban Application Review

251

10.4 PSI Urban Applications: Validation Review

254

10.4.1 Results from a Major Validation Experiment

254

10.4.2 PSI Validation Results

255

10.5 Conclusions

256

References

257

11 Airborne Remote Sensing at Millimeter Wave Frequencies

260

11.1 Introduction

260

11.2 Boundary Conditions for Millimeter Wave SAR

261

11.2.1 Environmental Preconditions

261

11.2.1.1 Transmission Through the Clear Atmosphere

261

11.2.1.2 Attenuation Due to Rain

261

11.2.1.3 Propagation Through Snow, Fog, Haze and Clouds

261

11.2.1.4 Propagation Through Sand, Dust and Smoke

262

11.2.2 Advantages of Millimeter Wave Signal Processing

262

11.2.2.1 Roughness Related Advantages

262

11.2.2.2 Imaging Errors for Millimeter Wave SAR

263

11.3 The MEMPHIS Radar

264

11.3.1 The Radar System

264

11.3.2 SAR-System Configuration and Geometry

267

11.4 Millimeter Wave SAR Processing for MEMPHIS Data

268

11.4.1 Radial Focussing

268

11.4.2 Lateral Focussing

269

11.4.3 Imaging Errors

270

11.4.4 Millimeter Wave Polarimetry

273

11.4.5 Multiple Baseline Interferometry with MEMPHIS

275

11.4.6 Test Scenarios

277

11.4.7 Comparison of InSAR with LIDAR

279

References

281

Index

283