Elasticity - Theory, Applications, and Numerics

Elasticity - Theory, Applications, and Numerics

von: Martin H. Sadd

Elsevier Trade Monographs, 2009

ISBN: 9780080922416 , 552 Seiten

2. Auflage

Format: PDF, ePUB, OL

Kopierschutz: DRM

Windows PC,Mac OSX geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Apple iPod touch, iPhone und Android Smartphones Online-Lesen für: Windows PC,Mac OSX,Linux

Preis: 78,95 EUR

Mehr zum Inhalt

Elasticity - Theory, Applications, and Numerics


 

Front Cover

1

Elasticity: Theory, Applications, and Numerics

4

Copyright Page

5

Contents

6

Preface

10

About the Author

16

PART I: FOUNDATIONS AND ELEMENTARY APPLICATIONS

18

Chapter 1. Mathematical Preliminaries

20

1.1 Scalar, Vector, Matrix, and Tensor Definitions

20

1.2 Index Notation

21

1.3 Kronecker Delta and Alternating Symbol

24

1.4 Coordinate Transformations

25

1.5 Cartesian Tensors

27

1.6 Principal Values and Directions for Symmetric Second-Order Tensors

29

1.7 Vector, Matrix, and Tensor Algebra

33

1.8 Calculus of Cartesian Tensors

34

1.9 Orthogonal Curvilinear Coordinates

38

Chapter 2. Deformation: Displacements and Strains

48

2.1 General Deformations

48

2.2 Geometric Construction of Small Deformation Theory

51

2.3 Strain Transformation

55

2.4 Principal Strains

57

2.5 Spherical and Deviatoric Strains

58

2.6 Strain Compatibility

58

2.7 Curvilinear Cylindrical and Spherical Coordinates

63

Chapter 3. Stress and Equilibrium

72

3.1 Body and Surface Forces

72

3.2 Traction Vector and Stress Tensor

74

3.3 Stress Transformation

77

3.4 Principal Stresses

78

3.5 Spherical, Deviatoric, Octahedral, and von Mises Stresses

82

3.6 Equilibrium Equations

83

3.7 Relations in Curvilinear Cylindrical and Spherical Coordinates

85

Chapter 4. Material Behavior—Linear Elastic Solids

94

4.1 Material Characterization

94

4.2 Linear Elastic Materials—Hooke’s Law

96

4.3 Physical Meaning of Elastic Moduli

99

4.4 Thermoelastic Constitutive Relations

103

Chapter 5. Formulation and Solution Strategies

108

5.1 Review of Field Equations

108

5.2 Boundary Conditions and Fundamental Problem Classifications

109

5.3 Stress Formulation

114

5.4 Displacement Formulation

115

5.5 Principle of Superposition

117

5.6 Saint-Venant’s Principle

118

5.7 General Solution Strategies

119

Chapter 6. Strain Energy and Related Principles

130

6.1 Strain Energy

130

6.2 Uniqueness of the Elasticity Boundary-Value Problem

135

6.3 Bounds on the Elastic Constants

136

6.4 Related Integral Theorems

137

6.5 Principle of Virtual Work

139

6.6 Principles of Minimum Potential and Complementary Energy

141

6.7 Rayleigh-Ritz Method

145

Chapter 7. Two-Dimensional Formulation

152

7.1 Plane Strain

152

7.2 Plane Stress

155

7.3 Generalized Plane Stress

158

7.4 Antiplane Strain

160

7.5 Airy Stress Function

161

7.6 Polar Coordinate Formulation

162

Chapter 8. Two-Dimensional Problem Solution

168

8.1 Cartesian Coordinate Solutions Using Polynomials

168

8.2 Cartesian Coordinate Solutions Using Fourier Methods

178

8.3 General Solutions in Polar Coordinates

186

8.4 Example Polar Coordinate Solutions

189

Chapter 9. Extension, Torsion, and Flexure of Elastic Cylinders

232

9.1 General Formulation

232

9.2 Extension Formulation

233

9.3 Torsion Formulation

234

9.4 Torsion Solutions Derived from Boundary Equation

244

9.5 Torsion Solutions Using Fourier Methods

250

9.6 Torsion of Cylinders with Hollow Sections

254

9.7 Torsion of Circular Shafts of Variable Diameter

258

9.8 Flexure Formulation

260

9.9 Flexure Problems without Twist

264

PART II: ADVANCED APPLICATIONS

274

Chapter 10. Complex Variable Methods

276

10.1 Review of Complex Variable Theory

276

10.2 Complex Formulation of the Plane Elasticity Problem

283

10.3 Resultant Boundary Conditions

287

10.4 General Structure of the Complex Potentials

288

10.5 Circular Domain Examples

290

10.6 Plane and Half-Plane Problems

295

10.7 Applications Using the Method of Conformal Mapping

300

10.8 Applications to Fracture Mechanics

305

10.9 Westergaard Method for Crack Analysis

308

Chapter 11. Anisotropic Elasticity

314

11.1 Basic Concepts

314

11.2 Material Symmetry

316

11.3 Restrictions on Elastic Moduli

322

11.4 Torsion of a Solid Possessing a Plane of Material Symmetry

323

11.5 Plane Deformation Problems

329

11.6 Applications to Fracture Mechanics

342

11.7 Curvilinear Anisotropic Problems

345

Chapter 12. Thermoelasticity

354

12.1 Heat Conduction and the Energy Equation

354

12.2 General Uncoupled Formulation

356

12.3 Two-Dimensional Formulation

357

12.4 Displacement Potential Solution

360

12.5 Stress Function Formulation

361

12.6 Polar Coordinate Formulation

364

12.7 Radially Symmetric Problems

365

12.8 Complex Variable Methods for Plane Problems

369

Chapter 13. Displacement Potentials and Stress Functions

382

13.1 Helmholtz Displacement Vector Representation

382

13.2 Lamé’s Strain Potential

383

13.3 Galerkin Vector Representation

384

13.4 Papkovich-Neuber Representation

389

13.5 Spherical Coordinate Formulations

393

13.6 Stress Functions

398

Chapter 14. Nonhomogeneous Elasticity

408

14.1 Basic Concepts

409

14.2 Plane Problem of Hollow Cylindrical Domain under Uniform Pressure

413

14.3 Rotating Disk Problem

419

14.4 Point Force on the Free Surface of a Half-Space

424

14.5 Antiplane Strain Problems

432

14.6 Torsion Problem

435

Chapter 15. Micromechanics Applications

448

15.1 Dislocation Modeling

449

15.2 Singular Stress States

453

15.3 Elasticity Theory with Distributed Cracks

462

15.4 Micropolar/Couple-Stress Elasticity

465

15.5 Elasticity Theory with Voids

474

15.6 Doublet Mechanics

480

Chapter 16. Numerical Finite and Boundary Element Methods

490

16.1 Basics of the Finite Element Method

491

16.2 Approximating Functions for Two-Dimensional Linear Triangular Elements

493

16.3 Virtual Work Formulation for Plane Elasticity

495

16.4 FEM Problem Application

499

16.5 FEM Code Applications

501

16.6 Boundary Element Formulation

506

Appendix A Basic Field Equations in Cartesian, Cylindrical, and Spherical Coordinates

514

Appendix B Transformation of Field Variables Between Cartesian, Cylindrical, and Spherical Components

519

Appendix C MATLAB Primer

522

Appendix D Review of Mechanics of Materials

535

Index

550