Handbook of Vacuum Science and Technology

Handbook of Vacuum Science and Technology

von: Dorothy Hoffman, Bawa Singh, John H. Thomas, III

Elsevier Trade Monographs, 1997

ISBN: 9780080533759 , 835 Seiten

Format: PDF

Kopierschutz: DRM

Windows PC,Mac OSX Apple iPad, Android Tablet PC's

Preis: 220,00 EUR

Mehr zum Inhalt

Handbook of Vacuum Science and Technology


 

Cover

1

Contents

10

Preface

18

List of Contributors

22

Part 1: Fundamentals of Vacuum Technology and Surface Physics

26

Chapter 1.1. Vacuum Nomenclature and Definitions

28

1.1.1 Basic Definition

28

1.1.2 Pressure Regions of Vacuum

28

Chapter 1.2. Gas Properties

33

1.2.1 Description of Vacuum as a Low-Pressure Gas

33

1.2.2 Characteristics of a Gas„Basic Definitions

33

1.2.3 Gas Laws

34

Chapter 1.3. Molecular Processes and Kinetic Theory

36

1.3.1 General Description

36

1.3.2 Molecular Motion

37

1.3.3 Kinetic Theory Derivation of the Gas Laws

39

1.3.4 Pressure

40

1.3.5 Molecular Mean Free Path

42

1.3.6 Number of Impacts with the Chamber Wall

44

1.3.7 Time to Form a Monolayer

45

1.3.8 Thermal Transpiration

45

1.3.9 Coefficient of Thermal Conductivity

46

1.3.10 Coefficient of Diffusion

46

Chapter 1.4. Throughput, Pumping Speed, Evacuation Rate, Outgassing Rate, and Leak Rate

47

Chapter 1.5. Gas Flow

50

1.5.1 Nature of Gas Flow

50

1.5.2 Turbulent Flow

52

1.5.3 Viscous, Streamline, or Laminar Flow

53

1.5.4 Molecular Flow

54

1.5.5 Flow Relationships

54

Chapter 1.6. Conductance

57

1.6.1 Conductance

57

1.6.2 Conductances in Parallel

58

1.6.3 Conductances in Series

58

Chapter 1.7. Flow Calculations

60

1.7.1 Equations for Viscous Flow

60

1.7.2 Equations for Molecular Flow

62

1.7.3 Knudsen's Formulation

62

1.7.4 Clausing Factors

63

Chapter 1.8. Surface Physics and Its Relation to Vacuum Science

65

1.8.1 Physical Adsorption or "Adsorption"

65

1.8.2 Chemisorption

67

1.8.3 Sticking Coefficient

68

1.8.4 Surface Area

69

1.8.5 Surface Adsorption Isotherms

70

1.8.6 Capillary Action

72

1.8.7 Condensation

73

1.8.8 Desorption Phenomena

74

1.8.9 Thermal Desorption

75

1.8.10 Photoactivation

77

1.8.11 Ultrasonic Desorption

78

1.8.12 Electron- and Ion-Stimulated Desorption

78

1.8.13 Gas Release from Surfaces

79

References

80

Part 2: Creation of Vacuum

82

Chapter 2.1. Technology of Vacuum Pumps „ An Overview

84

2.1.1 Vacuum Pump Function Basics

84

2.1.2 Gas Transport: Throughput

86

2.1.3 Performance Parameters

87

2.1.4 Pumping Speed

89

2.1.5 Pumpdown Time

90

2.1.6 Ultimate Pressure

94

2.1.7 Forevacuum and High-Vacuum Pumping

96

2.1.8 Pump System Relationships

98

2.1.9 Crossover from Rough to High-Vacuum Pumps

103

2.1.10 Pumping System Design

104

References

108

Chapter 2.2. Diaphragm Pumps

109

2.2.1 Introduction: Basics and Operating Principle

109

2.2.2 State-of-the-Art Design and Manufacturing

112

2.2.3 Performance and Technical Data

116

2.2.4 Modular Concept for Specific Application Setups: Standalone Operation

117

2.2.5 Diaphragm Pumps as Backing and Auxiliary Pumps in Vacuum Systems

118

References

121

Chapter 2.3. Vacuum Blowers

122

2.3.1 Introduction

122

2.3.2 Equipment Description

122

2.3.3 Blower Operating Principle

125

2.3.4 Blower Pumping Efficiency

126

2.3.5 Blower Pumping Speed Calculations

128

2.3.6 Power Requirements

129

2.3.7 Temperature Considerations

131

2.3.8 Flow and Compression Ratio Control Mechanisms

133

2.3.9 Liquid-Sealed Blowers

137

2.3.10 Selected System Arrangements

137

Chapter 2.4. Vacuum Jet Pumps (Diffusion Pumps)

141

2.4.1 Basic Pumping Mechanism

142

2.4.2 Pumping Speed

147

2.4.3 Throughput

152

2.4.4 Tolerable Forepressure

153

2.4.5 Ultimate Pressure

157

2.4.6 Backstreaming

162

2.4.7 Other Performance Aspects

169

References

173

Chapter 2.5. Cryogenic Pumps

174

2.5.1 Introduction

174

2.5.2 Cryopump Basics

181

2.5.3 Advanced Control Systems

192

2.5.4 Cryopump Process Applications

198

2.5.5 Cryogenic Pumps Specifically for Water Vapor

202

2.5.6 Comparison of Cryopumps to Other Types of Pumps

204

2.5.7 Future Developments

206

References

206

Chapter 2.6. Turbomolecular Pumps

208

2.6.1 Turbomolecular Pumps (TMP)

208

2.6.2 Molecular Drag Pumps (MDP)

220

2.6.3 Combination of Pumps (TMP + MDP)

222

2.6.4 Evaluation of Combinations of Backing Pumps and TMPs, Etc

225

2.6.5 The Use of TMP in Applications: Specific Effects and Demands

233

2.6.6 Avoiding Operational Mistakes

236

References

237

Chapter 2.7. Pumps for Ultra-High Vacuum Applications

239

2.7.1 System Design for Ultra-High Vacuum

240

2.7.2 The Selection of Pumps for Ultra-High Vacuum Applications

241

2.7.3 Sputter-Ion Pumps

245

2.7.4 Getter Pumps

267

References

277

Part 3: Vacuum Measurements

280

Chapter 3.1. The Measurement of Low Pressures

282

3.1.1 Overview

283

3.1.2 Direct Reading Gauges

285

3.1.3 Indirect Reading Gauges

290

3.1.4 Calibration of Vacuum Gauges

311

References

313

Chapter 3.2. Mass Analysis and Partial Pressure Measurements

315

3.2.1 Overview and Applications

315

3.2.2 Inlet Systems

325

3.2.3 Ion Generation and Ion Sources

328

3.2.4 Ion Separation Analyzers

333

3.2.5 Detection of Ions

348

References

351

Chapter 3.3. Practical Aspects of Vacuum System Mass Spectrometers

360

3.3.1 Historical Insight

360

3.3.2 Expected Gases in a Vacuum System

361

3.3.3 The Ion Generation Process

365

3.3.4 Techniques for Analysis

376

3.3.5 Calibration of Vacuum System Mass Spectrometers

389

3.3.6 Some Applications

395

References

399

Chapter 3.4. Mass Flow Measurement and Control

401

3.4.1 General Principles of Mass Flow Measurement

401

3.4.2 Overview of Thermal Mass Flow Controller Technology

403

3.4.3 Performance Characteristics

407

3.4.4 Troubleshooting

411

References

412

Part 4: Systems Design and Components

414

Chapter 4.1. Selection Considerations for Vacuum Valves

416

4.1.1 Introduction

416

4.1.2 Valves for Shutoff

416

4.1.3 Valves for Control

422

4.1.4 Valve Construction

423

4.1.5 Specialty Valves

429

4.1.6 Installation Considerations for Vacuum Valves

432

References

433

Chapter 4.2. Flange and Component Systems

434

4.2.1 Introduction

434

4.2.2 Selecting a Flange System

435

4.2.3 Common Flange Systems

435

4.2.4 Components with Flanges Attached

450

Trademarks

455

References

457

Chapter 4.3. Magnetic-Fluid-Sealed Rotary Motion Feedthroughs

458

4.3.1 Basic Sealing Principle

458

4.3.2 Application Factors

459

4.3.3 Impact of Feedthrough on Process

461

4.3.4 Impact of Process on Feedthrough

462

4.3.5 Materials Considerations

463

4.3.6 Application Examples

465

4.3.7 Comparison to Other Types of Feedthroughs

467

Chapter 4.4. Viewports

469

4.4.1 Materials

469

4.4.2 Mounting Systems and Precautions

470

CH4Chapter 4.5. Construction Materials

471

4.5.1 Properties Defining Material Performance

471

4.5.2 Vacuum Chamber Materials

476

4.5.3 Special-Purpose Materials

480

References

487

Chapter 4.6. Demountable Seals for Flanges and Valves

488

4.6.1 Sealing Overview: Polymer and Metal Seals

488

4.6.2 The Elastomeric and Nonelastomeric Polymers Used in Vacuum Sealing

489

4.6.3 Metal Seals

499

References

507

Chapter 4.7. Outgassing of Materials

509

4.7.1 Relationships Among System Pressure, Pumping Speed, and Outgassing

509

4.7.2 Initial Pumpdown from Atmospheric Pressure

519

4.7.3 Pressure Vs. Time During Outgassing

520

4.7.4 The Outgassing Rate of Elastomers and Plastics

522

4.7.5 The Outgassing Rate of Metals and Ceramics

526

4.7.6 The Outgassing Rate of Preconditioned Vacuum Systems After Short Exposure to the Atmosphere

529

4.7.7 Methods of Decreasing the Outgassing Rate

531

4.7.8 Measurement of the Outgassing Rate of Materials

532

References

533

Chapter 4.8. Aluminum-Based Vacuum Systems

534

4.8.1 Outgassing

534

4.8.2 Demountable Seals

537

4.8.3 Cleaning and Surface Finishing

543

4.8.4 Mechanical Considerations

545

4.8.5 Thermal Conductivity and Emissivity

561

4.8.6 Corrosion

563

4.8.7 Welding Aluminum for Vacuum Applications

566

References

573

Chapter 4.9. Preparation and Cleaning of Vacuum Surfaces

578

4.9.1 Surface Modification

579

4.9.2 External Cleaning

592

4.9.3 Assembly, Handling, and Storage

612

4.9.4 In Situ Cleaning

616

4.9.5 Documentation

624

4.9.6 Conclusion

626

Trade Names

626

References

626

Part 5: Vacuum Applications

632

Chapter 5.1. High-Vacuum-Based Processes: Sputtering

634

5.1.1 Sputtering and Deposition

636

5.1.2 Sputter Deposition Technologies

637

5.1.3 Magnetron Applications

649

5.1.4 Future Directions in Sputtering

651

References

652

Chapter 5.2. Plasma Etching

653

5.2.1 Introduction

653

5.2.2 Review of Plasma Concepts Applicable to Etching Reactors

653

5.2.3 Basic Plasma Etching Requirements

658

5.2.4 Plasma Diagnostics

666

5.2.5 Basic Plasma Etch Reactors

668

5.2.6 Advanced Plasma Etch Reactors

674

5.2.7 New Trends

690

References

692

Chapter 5.3. Ion Beam Technology

697

5.3.1 Introduction

697

5.3.2 Ion Beam Etching

703

5.3.3 Ion Beam Sputter Deposition

708

5.3.4 lon-Beam-Assisted Deposition

712

5.3.5 Ion Beam Direct Deposition

714

5.3.6 Conclusion

715

References

716

Chapter 5.4. Pulsed Laser Deposition

719

5.4.1 Introduction

719

5.4.2 Pulsed Laser Deposition System

720

5.4.3 The Ablation Mechanism

723

5.4.4 Advantages and Limitations

725

5.4.5 Materials Survey

730

5.4.6 Future Outlook

733

References

733

Chapter 5.5. Plasma-Enhanced Chemical Vapor Deposition

736

5.5.1 Introduction

736

5.5.2 Equipment and Other Practical Considerations

742

5.5.3 Process Scaleup

748

5.5.4 Conclusion

752

References

753

Chapter 5.6. Common Analytical Methods for Surface and Thin Film

756

5.6.1 Introduction

756

5.6.2 The Electron Spectroscopies

757

5.6.3 Methods Based on Ion Bombardment

770

5.6.4 UHV Generation and System Considerations for Surface Analysis

780

References

782

Part 6: Large-Scale Vacuum-Based Processes

784

Chapter 6.1. Roll-to-Roll Vacuum Coating

786

6.1.1 Overview of Roll-to-Roll Vacuum Coating

786

6.1.2 Typical Products

789

6.1.3 Materials and Deposition Processes Commonly Used in Roll-to-Roll Coating

790

6.1.4 Vacuum Systems for Roll-to-Roll Coating Applications

800

6.1.5 Substrates (Webs)

804

6.1.6 Process Control

808

6.1.7 Specific Problems Exhibited by Coatings

809

References

812

Chapter 6.2. The Development of Ultra-High-Vacuum Technology for Particle Accelerators and Magnetic Fusion Devices

814

6.2.1 Introduction

814

6.2.2 Storage Rings and the Need for UHV

815

6.2.3 UHV for Early Storage Rings

818

6.2.4 Storage Ring Vacuum Vessel and Pumping System Developments

821

6.2.5 Cold-Bore Machines

823

6.2.6 Superconducting RF Accelerators

825

6.2.7 The Next-Generation Big Accelerator?

826

6.2.8 The Magnetic Fusion Road Map

826

6.2.9 The Early History of Magnetic Fusion

828

6.2.10 Model C: The First UHV Fusion Device

829

6.2.11 The Russian Revolution in Fusion: Tokamaks

830

6.2.12 Plasma Impurities and Vacuum Technology

831

6.2.13 Toward the Breakeven Demonstrations

833

6.2.14 The Next Step in Fusion

835

Acknowledgments

835

References

837

Index

840