Structured Light and Its Applications - An Introduction to Phase-Structured Beams and Nanoscale Optical Forces

Structured Light and Its Applications - An Introduction to Phase-Structured Beams and Nanoscale Optical Forces

von: David L. Andrews

Elsevier Trade Monographs, 2008

ISBN: 9780080559667 , 400 Seiten

Format: PDF, ePUB, OL

Kopierschutz: DRM

Windows PC,Mac OSX geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Apple iPod touch, iPhone und Android Smartphones Online-Lesen für: Windows PC,Mac OSX,Linux

Preis: 118,00 EUR

Mehr zum Inhalt

Structured Light and Its Applications - An Introduction to Phase-Structured Beams and Nanoscale Optical Forces


 

Front cover

1

Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces

4

Copyright page

5

Contents

6

Author Affiliations

12

Preface

14

Chapter 1. Introduction to Phase-Structured Electromagnetic Waves

16

1.1 Introduction

16

1.2 Laguerre-Gaussian Beams and Orbital Angular Momentum

17

1.3 Bessel and Mathieu Beams

22

1.4 General Solution of the Wave Equation

23

1.5 Classical or Quantum?

23

1.6 Creating Laguerre-Gaussian Beams with Lenses and Holograms

24

1.7 Coherence: Spatial and Temporal

26

1.8 Transformations Between Basis Sets

27

1.9 Conclusion

29

References

30

Chapter 2. Angular Momentum and Vortices in Optics

34

2.1 Introduction

34

2.2 Classical Angular Momentum of Fields and Particles

37

2.3 Separation of Radiative Angular Momentum in L and S

39

2.4 Multipole Fields and Their Vortex Structure

42

2.5 Angular Momentum of Monochromatic Paraxial Beams

48

2.6 Quantum Description of Paraxial Beams

55

2.7 Nonmonochromatic Paraxial Beam

57

2.8 Operator Description of Classical Paraxial Beams

63

2.9 Dynamics of Optical Vortices

70

2.10 Conclusion

74

References

75

Chapter 3. Singular Optics and Phase Properties

78

3.1 Fundamental Phase Singularities

79

3.2 Beams with Composite Vortices

84

3.3 Noninteger Vortex Beams

87

3.4 Propagation Dynamics

89

3.5 Conclusions

89

Acknowledgments

90

References

90

Chapter 4. Nanoscale Optics: Interparticle Forces

94

4.1 Introduction

94

4.2 QED Description of Optically Induced Pair Forces

97

4.3 Overview of Applications

113

4.4 Discussion

116

Acknowledgments

117

References

117

Chapter 5. Near-Field Optical Micromanipulation

122

5.1 Introduction

122

5.2 Theoretical Considerations for Near-Field Trapping

126

5.3 Experimental Guiding and Trapping of Particles in the Near Field

128

5.4 Emergent Themes in the Near Field

144

5.5 Conclusions

149

Acknowledgments

149

References

149

Chapter 6. Holographic Optical Tweezers

154

6.1 Background

154

6.2 Example Rationale for Constructing Extended Arrays of Traps

155

6.3 Experimental Details

157

6.4 Algorithms for Holographic Optical Traps

164

6.5 The Future of Holographic Optical Tweezers

177

Acknowledgments

177

References

177

Chapter 7. Atomic and Molecular Manipulation Using Structured Light

184

7.1 Introduction

184

7.2 A Brief Overview

185

7.3 Transfer of OAM to Atoms and Molecules

186

7.4 Doppler Forces and Torques

187

7.5 The Doppler Shift

195

7.6 Rotational Effects on Liquid Crystals

201

7.7 Comments and Conclusions

206

Acknowledgments

207

References

207

Chapter 8. Optical Vortex Trapping and the Dynamics of Particle Rotation

210

8.1 Introduction

210

8.2 Computational Electromagnetic Modeling of Optical Trapping

211

8.3 Electromagnetic Angular Momentum

214

8.4 Electromagnetic Angular Momentum of Paraxial and Nonparaxial Optical Vortices

217

8.5 Nonparaxial Optical Vortices

220

8.6 Trapping in Vortex Beams

226

8.7 Symmetry and Optical Torque

233

8.8 Zero Angular Momentum Optical Vortices

241

8.9 Gaussian ``Longitudinal'' Optical Vortex

243

8.10 Conclusion

246

References

246

Chapter 9. Rotation of Particles in Optical Tweezers

252

9.1 Introduction

252

9.2 Using Intensity Shaped Beams to Orient and Rotate Trapped Objects

253

9.3 Angular Momentum Transfer to Particles Held in Optical Tweezers

255

9.4 Out of Plane Rotation in Optical Tweezers

257

9.5 Rotation of Helically Shaped Particles in Optical Tweezers

258

9.6 Applications of Rotational Control in Optical Tweezers

259

References

262

Chapter 10. Rheological and Viscometric Methods

264

10.1 Introduction

264

10.2 Optical Torque Measurement

266

10.3 A Rotating Optical Tweezers-Based Microviscometer

269

10.4 Applications

279

Conclusion

283

References

283

Chapter 11. Orbital Angular Momentum in Quantum Communication and Information

286

11.1 Sending and Receiving Quantum Information

288

11.2 Exploring the OAM State Space

295

11.3 Quantum Protocols

301

11.4 Conclusions and Outlook

305

Acknowledgments

306

References

306

Chapter 12. Optical Manipulation of Ultracold Atoms

310

12.1 Background

310

12.2 Optical Forces and Atom Traps

311

12.3 The Quantum Gas: Bose-Einstein Condensates

314

12.4 Light-Induced Gauge Potentials for Cold Atoms

323

12.5 Light-Induced Gauge Potentials for the Lambda Scheme

326

12.6 Light-Induced Gauge Fields for a Tripod Scheme

335

12.7 Ultra-Relativistic Behavior of Cold Atoms in Light-Induced Gauge Potentials

338

12.8 Final Remarks

344

References

345

Index

350

Color Insert

358