Wave Fields in Real Media - Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media

Wave Fields in Real Media - Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media

von: J. Jose M. Carcione (Ed.)

Elsevier Trade Monographs, 2007

ISBN: 9780080468907 , 538 Seiten

2. Auflage

Format: PDF, ePUB, OL

Kopierschutz: DRM

Windows PC,Mac OSX geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Apple iPod touch, iPhone und Android Smartphones Online-Lesen für: Windows PC,Mac OSX,Linux

Preis: 170,00 EUR

Mehr zum Inhalt

Wave Fields in Real Media - Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media


 

Front Cover

1

Wave Fields in Real Media

4

Copyright Page

5

Table of Contents

6

Preface

14

About the author

20

Basic notation

21

Glossary of main symbols

22

Chapter 1 Anisotropic elastic media

24

1.1 Strain-energy density and stress-strain relation

24

1.2 Dynamical equations

27

1.2.1 Symmetries and transformation properties

29

Symmetry plane of a monoclinic medium

30

Transformation of the stiffness matrix

32

1.3 Kelvin-Christoffel equation, phase velocity and slowness

33

1.3.1 Transversely isotropic media

34

1.3.2 Symmetry planes of an orthorhombic medium

36

1.3.3 Orthogonality of polarizations

37

1.4 Energy balance and energy velocity

38

1.4.1 Group velocity

40

1.4.2 Equivalence between the group and energy velocities

41

1.4.3 Envelope velocity

43

1.4.4 Example: Transversely isotropic media

43

1.4.5 Elasticity constants from phase and group velocities

45

1.4.6 Relationship between the slowness and wave surfaces

47

SH-wave propagation

47

1.5 Finely layered media

48

1.6 Anomalous polarizations

52

1.6.1 Conditions for the existence of anomalous polarization

52

1.6.2 Stability constraints

55

1.6.3 Anomalous polarization in orthorhombic media

56

1.6.4 Anomalous polarization in monoclinic media

56

1.6.5 The polarization

57

1.6.6 Example

58

1.7 The best isotropic approximation

61

1.8 Analytical solutions for transversely isotropic media

63

1.8.1 2-D Green's function

63

1.8.2 3-D Green's function

65

1.9 Reflection and transmission of plane waves

65

1.9.1 Cross-plane shear waves

68

Chapter 2 Viscoelasticity and wave propagation

74

2.1 Energy densities and stress-strain relations

75

2.1.1 Fading memory and symmetries of the relaxation tensor

77

2.2 Stress-strain relation for 1-D viscoelastic media

78

2.2.1 Complex modulus and storage and loss moduli

78

2.2.2 Energy and significance of the storage and loss moduli

80

2.2.3 Non-negative work requirements and other conditions

80

2.2.4 Consequences of reality and causality

81

2.2.5 Summary of the main properties

83

Relaxation function

83

Complex modulus

83

2.3 Wave propagation concepts for 1-D viscoelastic media

84

2.3.1 Wave propagation for complex frequencies

88

2.4 Mechanical models and wave propagation

91

2.4.1 Maxwell model

91

2.4.2 Kelvin-Voigt model

94

2.4.3 Zener or standard linear solid model

97

2.4.4 Burgers model

100

2.4.5 Generalized Zener model

102

Nearly constant Q

103

2.4.6 Nearly constant-Q model with a continuous spectrum

105

2.5 Constant-Q model and wave equation

106

2.5.1 Phase velocity and attenuation factor

107

2.5.2 Wave equation in differential form. Fractional derivatives.

108

Propagation in Pierre shale

109

2.6 The concept of centrovelocity

110

2.6.1 1-D Green's function and transient solution

111

2.6.2 Numerical evaluation of the velocities

112

2.6.3 Example

113

2.7 Memory variables and equation of motion

115

2.7.1 Maxwell model

115

2.7.2 Kelvin-Voigt model

117

2.7.3 Zener model

118

2.7.4 Generalized Zener model

118

Chapter 3 Isotropic anelastic media

120

3.1 Stress-strain relation

121

3.2 Equations of motion and dispersion relations

121

3.3 Vector plane waves

123

3.3.1 Slowness, phase velocity and attenuation factor

123

3.3.2 Particle motion of the P wave

125

3.3.3 Particle motion of the S waves

127

3.3.4 Polarization and orthogonality

129

3.4 Energy balance, energy velocity and quality factor

130

3.4.1 P wave

131

3.4.2 S waves

137

3.5 Boundary conditions and Snell's law

137

3.6 The correspondence principle

139

3.7 Rayleigh waves

139

3.7.1 Dispersion relation

140

3.7.2 Displacement field

141

3.7.3 Phase velocity and attenuation factor

142

3.7.4 Special viscoelastic solids

143

Incompressible solid

143

Poisson solid

143

Hardtwig solid

143

3.7.5 Two Rayleigh waves

143

3.8 Reflection and transmission of cross-plane shear waves

144

3.9 Memory variables and equation of motion

147

3.10 Analytical solutions

149

3.10.1 Viscoacoustic media

149

3.10.2 Constant-Q viscoacoustic media

150

3.10.3 Viscoelastic media

151

3.11 The elastodynamic of a non-ideal interface

152

3.11.1 The interface model

153

Boundary conditions in differential form

154

3.11.2 Reflection and transmission coefficients of SH waves

155

Energy loss

156

3.11.3 Reflection and transmission coefficients of P-SV waves

156

Energy loss

158

Examples

159

Chapter 4 Anisotropic anelastic media

162

4.1 Stress-strain relations

163

4.1.1 Model 1: Effective anisotropy

165

4.1.2 Model 2: Attenuation via eigenstrains

165

4.1.3 Model 3: Attenuation via mean and deviatoric stresses

167

4.2 Wave velocities, slowness and attenuation vector

168

4.3 Energy balance and fundamental relations

170

4.3.1 Plane waves. Energy velocity and quality factor

172

4.3.2 Polarizations

177

4.4 The physics of wave propagation for viscoelastic SH waves

178

4.4.1 Energy velocity

178

4.4.2 Group velocity

179

4.4.3 Envelope velocity

180

4.4.4 Perpendicularity properties

180

4.4.5 Numerical evaluation of the energy velocity

182

4.4.6 Forbidden directions of propagation

184

4.5 Memory variables and equation of motion in the time domain

185

4.5.1 Strain memory variables

186

4.5.2 Memory-variable equations

188

4.5.3 SH equation of motion

189

4.5.4 qP-qSV equation of motion

189

4.6 Analytical solution for SH waves in monoclinic media

191

Chapter 5 The reciprocity principle

194

5.1 Sources, receivers and reciprocity

195

5.2 The reciprocity principle

195

5.3 Reciprocity of particle velocity. Monopoles

196

5.4 Reciprocity of strain

197

5.4.1 Single couples

197

Single couples without moment

200

Single couples with moment

200

5.4.2 Double couples

200

Double couple without moment. Dilatation.

200

Double couple without moment and monopole force

201

Double couple without moment and single couple

201

5.5 Reciprocity of stress

202

Chapter 6 Reflection and transmission of plane waves

206

6.1 Reflection and transmission of SH waves

207

6.1.1 Symmetry plane of a homogeneous monoclinic medium

207

6.1.2 Complex stiffnesses of the incidence and transmission media

209

6.1.3 Reflection and transmission coefficients

210

6.1.4 Propagation, attenuation and energy directions

213

6.1.5 Brewster and critical angles

218

6.1.6 Phase velocities and attenuations

222

6.1.7 Energy-flux balance

224

6.1.8 Energy velocities and quality factors

226

6.2 Reflection and transmission of qP-qSV waves

228

6.2.1 Propagation characteristics

228

6.2.2 Properties of the homogeneous wave

230

6.2.3 Reflection and transmission coefficients

231

6.2.4 Propagation, attenuation and energy directions

232

6.2.5 Phase velocities and attenuations

233

6.2.6 Energy-flow balance

233

6.2.7 Umov-Poynting theorem, energy velocity and quality factor

235

6.2.8 Reflection of seismic waves

236

6.2.9 Incident inhomogeneous waves

247

Generation of inhomogeneous waves

248

Ocean bottom

249

6.3 Reflection and transmission at fluid/solid interfaces

251

6.3.1 Solid/fluid interface

251

6.3.2 Fluid/solid interface

252

6.3.3 The Rayleigh window

253

6.4 Reflection and transmission coefficients of a set of layers

254

Chapter 7 Biot's theory for porous media

258

7.1 Isotropic media. Strain energy and stress-strain relations

260

7.1.1 Jacketed compressibility test

260

7.1.2 Unjacketed compressibility test

261

7.2 The concept of effective stress

263

7.2.1 Effective stress in seismic exploration

265

Pore-volume balance

267

Acoustic properties

269

7.2.2 Analysis in terms of compressibilities

269

7.3 Anisotropic media. Strain energy and stress-strain relations

273

7.3.1 Effective-stress law for anisotropic media

277

7.3.2 Summary of equations

278

Pore pressure

279

Total stress

279

Effective stress

279

Skempton relation

279

Undrained-modulus matrix

279

7.3.3 Brown and Korringa's equations

279

Transversely isotropic medium

280

7.4 Kinetic energy

280

7.4.1 Anisotropic media

283

7.5 Dissipation potential

285

7.5.1 Anisotropic media

286

7.6 Lagrange's equations and equation of motion

286

7.6.1 The viscodynamic operator

288

7.6.2 Fluid flow in a plane slit

288

7.6.3 Anisotropic media

293

7.7 Plane-wave analysis

294

7.7.1 Compressional waves

294

Relation with Terzaghi's law

297

The diffusive slow mode

299

7.7.2 The shear wave

299

7.8 Strain energy for inhomogeneous porosity

301

7.8.1 Complementary energy theorem

302

7.8.2 Volume-averaging method

303

7.9 Boundary conditions

307

7.9.1 Interface between two porous media

307

Deresiewicz and Skalak's derivation

307

Gurevich and Schoenberg's derivation

309

7.9.2 Interface between a porous medium and a viscoelastic medium

311

7.9.3 Interface between a porous medium and a viscoacoustic medium

312

7.9.4 Free surface of a porous medium

312

7.10 The mesoscopic loss mechanism. White model

312

7.11 Green's function for poro-viscoacoustic media

318

7.11.1 Field equations

318

7.11.2 The solution

319

7.12 Green's function at a fluid/porous medium interface

322

7.13 Poro-viscoelasticity

326

7.14 Anisotropic poro-viscoelasticity

330

7.14.1 Stress-strain relations

331

7.14.2 Biot-Euler's equation

332

7.14.3 Time-harmonic fields

332

7.14.4 Inhomogeneous plane waves

335

7.14.5 Homogeneous plane waves

337

7.14.6 Wave propagation in femoral bone

339

Chapter 8 The acoustic-electromagnetic analogy

344

8.1 Maxwell's equations

346

8.2 The acoustic-electromagnetic analogy

347

8.2.1 Kinematics and energy considerations

352

8.3 A viscoelastic form of the electromagnetic energy

354

8.3.1 Umov-Poynting's theorem for harmonic fields

355

8.3.2 Umov-Poynting's theorem for transient fields

356

The Debye-Zener analogy

360

The Cole-Cole model

364

8.4 The analogy for reflection and transmission

365

8.4.1 Reflection and refraction coefficients

365

Propagation, attenuation and ray angles

366

Energy-flux balance

366

8.4.2 Application of the analogy

367

Refraction index and Fresnel's formulae

367

Brewster (polarizing) angle

368

Critical angle. Total reflection

369

Reflectivity and transmissivity

372

Dual fields

372

Sound waves

373

8.4.3 The analogy between TM and TE waves

374

Green's analogies

375

8.4.4 Brief historical review

378

8.5 3-D electromagnetic theory and the analogy

379

8.5.1 The form of the tensor components

380

8.5.2 Electromagnetic equations in differential form

381

8.6 Plane-wave theory

382

8.6.1 Slowness, phase velocity and attenuation

384

8.6.2 Energy velocity and quality factor

386

8.7 Analytical solution for anisotropic media

389

8.7.1 The solution

391

8.8 Finely layered media

392

8.9 The time-average and CRIM equations

395

8.10 The Kramers-Kronig dispersion relations

396

8.11 The reciprocity principle

397

8.12 Babinet's principle

398

8.13 Alford rotation

399

8.14 Poro-acoustic and electromagnetic diffusion

401

8.14.1 Poro-acoustic equations

401

8.14.2 Electromagnetic equations

403

The TM and TE equations

403

Phase velocity, attenuation factor and skin depth

404

Analytical solutions

404

8.15 Electro-seismic wave theory

405

Chapter 9 Numerical methods

408

9.1 Equation of motion

408

9.2 Time integration

409

9.2.1 Classical finite differences

411

9.2.2 Splitting methods

412

9.2.3 Predictor-corrector methods

413

The Runge-Kutta method

413

9.2.4 Spectral methods

413

9.2.5 Algorithms for finite-element methods

415

9.3 Calculation of spatial derivatives

415

9.3.1 Finite differences

415

9.3.2 Pseudospectral methods

417

9.3.3 The finite-element method

419

9.4 Source implementation

420

9.5 Boundary conditions

421

9.6 Absorbing boundaries

423

9.7 Model and modeling design – Seismic modeling

424

9.8 Concluding remarks

427

9.9 Appendix

428

9.9.1 Electromagnetic-diffusion code

428

9.9.2 Finite-differences code for the SH-wave equation of motion

432

9.9.3 Finite-differences code for the SH-wave and Maxwell's equations

438

9.9.4 Pseudospectral Fourier Method

445

9.9.5 Pseudospectral Chebyshev Method

447

Examinations

450

Chronology of main discoveries

454

Leonardo's manuscripts

466

A list of scientists

470

Bibliography

480

Name index

514

Subject index

526