The Engineering of Mixed Reality Systems

von: Emmanuel Dubois, Philip Gray, Laurence Nigay

Springer-Verlag, 2009

ISBN: 9781848827332 , 450 Seiten

Format: PDF

Kopierschutz: Wasserzeichen

Windows PC,Mac OSX geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's

Preis: 213,99 EUR

  • AutoCAD 2012 - Von der 2D-Linie zum 3D-Modell
    Organisiert (DIGITAL lifeguide) - Termine, Kontakte, Aufgaben immer & überall im Griff
    iTunes (DIGITAL lifeguide) - Die besten Tipps und Tricks für entspannten Musikgenuss
    Von PDM zu PLM - Prozessoptimierung durch Integration
    Konstruieren mit CAD - Das Komplettpaket für 3D Modellieren im Maschinenbau

     

     

     

     

 

Mehr zum Inhalt

The Engineering of Mixed Reality Systems


 

Contents

6

Contributors

9

1 Introduction

14

1.1 Mixed Reality Systems: A Booming Domain

14

1.1.1 Variety of Mixed Reality Systems

14

1.1.2 Variety of Application Domains

15

1.2 Mixed Reality Engineering

15

1.2.1 Interaction Design

15

1.2.1.1 Elements of Design

16

1.2.1.2 Specific Design Issues

16

1.2.1.3 Structuring the Design

17

1.2.2 Software Design and Implementation

17

1.2.2.1 Technical Solutions and Interaction Techniques

17

1.2.2.2 Platform: Prototyping, Development and Authoring Tools

17

1.2.2.3 Life Cycle

18

1.2.3 Application of Mixed Reality

18

Part I Interaction Design

20

2 An Integrating Framework for Mixed Systems

21

2.1 Introduction

21

2.2 Illustrative Examples

23

2.3 Integrating Framework for Describing and Classifying Mixed Systems

25

2.3.1 Modeling of a Mixed Object

25

2.3.2 Mixed Object: Intrinsic Characterization

26

2.3.2.1 Characteristics of the Linking Modalities (Devices and Languages)

26

2.3.2.2 Characteristics of the Physical Properties

27

2.3.2.3 Characteristics of the Digital Properties

29

2.3.3 Modeling Mixed Interaction: Putting Mixed Objects into Interaction Context

31

2.3.4 Mixed Object: Extrinsic Characterization

33

2.3.4.1 Characteristics of the Roles

33

2.3.4.2 Characteristics of the Physical Properties

33

2.3.4.3 Characteristics of the Digital Properties

35

2.4 Integrating Framework for Designing Mixed Systems: The Case of Roam

36

2.4.1 Extrinsic Design

38

2.4.2 Intrinsic Design

40

2.5 Conclusion

41

References

42

3 A Holistic Approach to Design and Evaluation of Mixed Reality Systems

44

3.1 Introduction

44

3.2 Related Work

45

3.2.1 Mixed Reality Systems

46

3.2.2 Usefulness

47

3.2.3 Technology in Context

47

3.3 User Involvement in the Development Process

50

3.3.1 The Method Used in the Case Studies

51

3.3.2 The Design Process Used in the Case Studies

51

3.4 The First Case Study An Instructional Task

53

3.4.1 Equipment Used in the Study

54

3.4.2 The User Task

54

3.4.3 Participants and Procedure

55

3.4.4 Results of the Study

56

3.5 The Second Case Study A Collaborative MR Application

57

3.5.1 Equipment Used in the Study

58

3.5.2 The User Task

58

3.5.3 Participants and Procedure

59

3.5.4 Results of the Study

60

3.6 Discussion

62

3.7 Conclusions and Future Direction

63

References

64

4 Embedded Mixed Reality Environments

67

4.1 Introduction

67

4.2 Three Embedded Mixed Reality Environments

69

4.2.1 The MackRoom: Co-visiting an Exhibition from Different Physical Locations

69

4.2.1.1 MackRoom in Use and Experience

71

4.2.2 Mixed Reality Architecture: Flexible Audio-Visual Connections Between Distributed Offices

72

4.2.2.1 MRA in Use and Experience

74

4.2.3 Uncle Roy All Around You: A Mobile Mixed Reality Performance

74

4.2.3.1 URAAY in Use and Experience

76

4.3 Designing for Embeddedness

77

4.3.1 Creating Space for Interaction

77

4.3.1.1 Setting Up the Physical Interaction Space

77

4.3.1.2 Extent of Physical Interaction Space

78

4.3.2 Asymmetries in the Interface Between Digital and Physical Environments

79

4.3.2.1 User Representations

80

4.3.2.2 Spatial Mapping

80

4.3.2.3 Content Mapping

81

4.3.3 Social Interaction in Embedded Mixed Reality Environment

81

4.3.3.1 Role Taking

82

4.3.3.2 Social Rules and Norms

83

4.4 Reflection

84

4.5 Conclusions

86

References

86

5 The Semantic Environment: Heuristics for a Cross-Context HumanInformation Interaction Model

89

5.1 Introduction

89

5.2 A Holistic Framework

90

5.3 From Information Retrieval to HumanInformation Interaction

91

5.4 Resilience

92

5.4.1 Scenario: The Resilient Supermarket

93

5.5 Place

95

5.5.1 Hansel and Gretel or Getting Lost in the Woods

96

5.5.2 Berry-Picking

96

5.5.3 Information Scent

97

5.5.4 Scenario: Sense of Place in the Supermarket

98

5.6 Choice

101

5.6.1 Hick's Law

102

5.6.2 Reducing the Load: Organize and Cluster, Focus, and Magnify

102

5.6.3 Scenario: Choice in the Supermarket

103

5.7 Correlation

103

5.7.1 Scenario: Correlation in the Supermarket

104

5.8 The Semantic Supermarket

105

5.9 Conclusions: Toward a Cross-Context HumanInformation Interaction Model

106

References

107

6 Tangible Interaction in Mixed Reality Systems

110

6.1 Introduction

110

6.2 State of the Art of Tangible User Interface Models

112

6.2.1 The Seminal Tangible Interaction Model

112

6.2.2 The Extended Tangible Interaction Model

113

6.3 Designing Tangible Interaction Techniques in MR Environments

114

6.3.1 Categorizations of Tangible User Interfaces

114

6.3.2 A Multidisciplinary and Participatory Approach

115

6.3.3 Taking into Account the Skills of Users

115

6.3.4 The Design Process

116

6.4 Case Studies

117

6.4.1 A Tangible User Interface for 3D CAD Parts Assembly: ESKUA

117

6.4.2 A Tangible Tabletop for Geoscience: GeoTUI

118

6.4.3 A Tangible User Interface for the Virtual Reassembly of Fractured Archaeological Objects: ArcheoTUI

120

6.4.4 Illustration of the Design Approach on Case Studies

121

6.5 User Studies in the Workplace: Feedback

122

6.5.1 Evaluation: Setup, Metrics, Analysis

122

6.5.1.1 ESKUA

122

6.5.1.2 GeoTUI

123

6.5.1.3 ArcheoTUI

124

6.5.2 Lessons Learnt from the User Studies

124

6.5.2.1 Recommendations Derived from Our User Studies on Tangible Interaction

125

6.5.2.2 Some Questions as a Guide

126

6.6 Conclusion: The Benefits of Tangible Interaction in Mixed Reality Systems

126

References

127

7 Designing a Mixed Reality Intergenerational EntertainmentSystem

130

7.1 Introduction

130

7.2 Related Work

132

7.3 Design Methodology

133

7.3.1 Problem Identification

134

7.3.2 Problem Exploration

135

7.3.3 Design Goals

136

7.4 Design Requirements and Ideas Generation

137

7.4.1 Resources and Time Constraints

137

7.4.2 User Needs

137

7.4.3 Context of Use

138

7.4.4 Design Ideas Generation

138

7.5 Prototype Iterations and System Description

139

7.5.1 Prototype Iterations

139

7.5.2 Current System Architecture

139

7.5.3 Game Play

140

7.6 Intergenerational Player Study

143

7.6.1 Introduction

143

7.6.2 Methods

143

7.6.3 Physical Interface Design Issues

144

7.6.4 Physicality Issues of the Virtual and Physical Player Roles

146

7.6.5 Focus Group Session with Older Players

147

7.7 Conclusion

148

References

149

8 Auditory-Induced Presence in Mixed Reality Environments and Related Technology

151

8.1 Audio in Mixed Realities

151

8.2 Presence and Auditory Displays

154

8.3 Spatial Sound Rendering and Presentation Technologies

155

8.3.1 Multichannel Loudspeaker Reproduction

155

8.3.2 Headphone Reproduction

156

8.3.3 Presentation Systems -- Design Considerations

158

8.3.4 Virtual Acoustics Synthesis and Optimization

158

8.4 Auditory Presence in Mediated Environments: Previous Findings

159

8.4.1 Presence and the Auditory Background

160

8.4.2 Spatial Properties

161

8.4.3 Sound Quality and Sound Content

162

8.4.4 Consistency Across and Within Modalities

163

8.5 Example Scenario: The MR Museum of Music History

164

8.5.1 Displays and Interaction Devices

165

8.5.2 Exhibition Displays

165

8.6 Discussion

167

References

168

9 An Exploration of Exertion in Mixed Reality Systems via the Table Tennis for Three Game

172

9.1 Introduction

173

9.2 Related Work

174

9.3 Table Tennis for Three

176

9.3.1 The Table Tennis for Three Experience

177

9.4 Design of Table Tennis for Three

179

9.4.1 Choice of Tangible Equipment

179

9.4.1.1 Supporting Bodily Skill Training

179

9.4.1.2 Utilizing Existing Sport Advances

179

9.4.1.3 Uncertainty of the Real World

179

9.4.1.4 Supporting Proprioception and Force-Feedback

181

9.4.1.5 Avoiding Complex Equipment Such as Head-Mounted Displays

181

9.4.2 Implementation

182

9.4.2.1 Impact Detection Mechanism

182

9.4.2.2 Videoconferencing

184

9.4.2.3 Gameplay

184

9.5 Feedback from Users

185

9.6 Future Work

186

9.7 Discussion and Conclusions

186

References

188

10 Developing Mixed Interactive Systems: A Model-Based Process for Generating and Managing Design Solutions

190

10.1 Introduction

190

10.1.1 Existing MIS Development Support

191

10.1.2 Objective and Goal

192

10.1.3 A Case Study

193

10.2 Articulating MIS Task Analysis and Mixed Interaction Design

194

10.2.1 Presentation of the Two Selected Models: K-MAD and ASUR

194

10.2.1.1 Task Analysis with K-MAD

194

10.2.1.2 Mixed Interaction Design with ASUR

195

10.2.2 Articulation Between K-MAD and ASUR

195

10.2.2.1 Task to Mixed Interaction Model Transformations

195

10.2.2.2 Applying the Task to Mixed Interaction Model Transformations on the Case Study

196

10.2.3 Designer and ASUR Refinement

198

10.2.4 Advantages and Limits of the Transformation Process

200

10.3 Articulating Mixed Interaction Design with MIS Implementation

201

10.3.1 MIS Architecture Requirements

201

10.3.1.1 Modifiability, Portability and Development Efficiency

201

10.3.1.2 ASUR-IL Metamodel

202

10.3.1.3 Model-Driven Engineering Tools

203

10.3.2 ASUR to ASUR-IL Transformation Principles

203

10.3.2.1 Mixed Interaction to Software Architecture Model Transformation

203

10.3.2.2 Applying the Mixed Interaction to Software Architecture Model Transformation on the Case Study

204

10.3.3 From a Software Architecture Model for MIS to mplementation

206

10.3.4 Limits and Interests of These Articulations

207

10.4 Outcomes of the Design Process in an Iterative Development Context

208

10.4.1 K-MAD Level

209

10.4.2 ASUR Level

209

10.4.3 ASUR-IL Level

210

10.4.4 WComp Level

211

10.5 Conclusions and Perspectives

211

References

213

Part II Software Design and Implementation

216

11 Designing Outdoor Mixed Reality Hardware Systems

217

11.1 Introduction

217

11.2 Previous Work on Outdoor MR

220

11.3 The Tinmith System

221

11.4 Hardware for Outdoor MR Systems

222

11.4.1 Head-Mounted Electronics

224

11.4.2 Main Enclosure

226

11.4.3 Batteries

227

11.5 Input Devices

227

11.5.1 Pinch Gloves

228

11.5.2 Button Box

228

11.5.3 Additional Input Devices

229

11.6 Wearable Mixed Reality System Design

230

11.6.1 Manufacturing Techniques

230

11.6.2 Belt vs. Backpack

231

11.6.3 Electrical and Magnetic Interference

232

11.7 System Management

232

11.7.1 Power Management

232

11.7.2 Configuration Selection

233

11.7.3 Input Management

234

11.7.4 External Display

234

11.8 Conclusion

236

References

236

12 Multimodal Excitatory Interfaces with Automatic Content Classification

238

12.1 Motivation

238

12.2 Background Review

240

12.3 Inertial Sensing

240

12.4 Object Dynamics

242

12.4.1 Accelerometer Mapping

242

12.4.2 Friction and Stiction

243

12.4.3 Springs

243

12.4.4 Impacts

244

12.5 Message Transformation

244

12.5.1 PPM Language Model

244

12.5.1.1 Potential Enhancements

247

12.5.1.2 Test Model Classes

247

12.5.1.3 Certainty Filtering

249

12.5.2 Exploration

249

12.5.2.1 Identity Sieving

249

12.5.2.2 Time-Sequenced ''Rain''

250

12.6 Auditory and Vibrotactile Display

250

12.6.1 Vibrotactile Events

251

12.6.2 Audio Synthesis

252

12.6.2.1 Sample Banks

252

12.6.2.2 Audio Transformations

253

12.7 Further-Work Active Selection

254

12.8 Conclusions

254

References

254

13 Management of Tracking for Mixed and AugmentedReality Systems

256

13.1 Motivation

256

13.1.1 Requirements

257

13.1.2 Related Work

258

13.1.3 The Ubitrack and trackman Approach

258

13.2 The Ubitrack Framework

259

13.2.1 Spatial Relationship Graphs

259

13.2.1.1 Use of Cycles for Sensor Calibration and Object Registration

260

13.2.1.2 Edge Characteristics

260

13.2.2 Data Flow Networks

261

13.2.3 Spatial Relationship Patterns

261

13.2.3.1 Basic Concept

261

13.2.3.2 Synchronization Issues

263

13.2.3.3 Pattern Categories

263

13.2.4 SRG Design Activities

265

13.3 trackman: Interactive Modeling of Spatial Relationships

265

13.3.1 System Architecture

265

13.3.2 Graphical Layout

266

13.3.3 Interactive SRG Generation

267

13.3.4 Interactive Deduction of Spatial Relationships

267

13.3.5 More Modeling Functionality

268

13.3.6 Ordering of Design Activities

269

13.4 Advanced Interactive Modeling Concepts

270

13.4.1 Semi-automatic Modeling

270

13.4.2 Meta Patterns

271

13.5 Tools to Analyze and to Interact with Data Flows

272

13.5.1 Tools for Calibration and Registration

272

13.5.2 Tools for Online Analysis of Tracking Environments

274

13.6 Application Examples

275

13.7 Conclusion

276

References

277

14 Authoring Immersive Mixed Reality Experiences

279

14.1 Introduction

279

14.1.1 Definitions and Assumptions

280

14.1.1.1 Mixed Reality

280

14.1.1.2 Immersion

280

14.1.1.3 Absolute vs. Relative Coordinate Systems

280

14.2 Background: Mixed Reality Environments in the Arts

281

14.2.1 Motivation for Using Mixed Reality in the Arts

281

14.2.2 Examples of Mixed Reality in the Arts

282

14.2.2.1 Example: Markerless Magic Books

282

14.2.2.2 Mixed Reality as a Presentation Medium

282

14.2.2.3 Crossing Borders: Interactive Cinema

282

14.3 Related Work: Authoring Tools

283

14.4 Authoring Content for Mixed Reality Environments

284

14.4.1 Engineering and Authoring Platform: VGE

284

14.4.1.1 Overall Architecture

285

14.4.1.2 Perspectives

285

14.4.1.3 Sensors and Algorithms

286

14.4.2 Designing the Real World

286

14.4.2.1 Geometry and Visual Appearance

287

14.4.2.2 Lighting

287

14.4.3 Mixing Virtual Images

287

14.4.3.1 Test Setup

288

14.4.4 Directing the User Experience

290

14.4.4.1 Prototyping Tool: Interactive Table

291

14.4.5 Case Study: Exercise in Immersion 4

292

14.5 Conclusions

293

References

294

15 Fiia: A Model-Based Approach to Engineering Collaborative Augmented Reality

296

15.1 Introduction

296

15.2 Example: Collaborative Game Prototyping with Raptor

297

15.3 Related Work

301

15.3.1 Modeling Collaborative Augmented Reality

301

15.3.2 Toolkits for Collaborative AR

301

15.4 Fiia Notation

302

15.4.1 Notation for Collaborative AR

303

15.4.1.1 Adapters

304

15.4.1.2 Data Sharing

305

15.4.2 Scenario-Based Design

306

15.4.3 Mapping Fiia Diagrams to Code

307

15.4.4 Summing Up the Fiia Notation

308

15.5 The Fiia.Net Toolkit

308

15.5.1 Conceptual Framework

308

15.5.2 Distribution Architecture

309

15.5.3 Adapters

311

15.6 Implementing Fiia

312

15.7 Experience

313

15.8 Conclusion

314

References

314

16 A Software Engineering Method for the Design of Mixed Reality Systems

316

16.1 Introduction

316

16.2 Extending an SE Method for Mixed Reality Systems

318

16.2.1 Extending Symphony for the Design of Mixed Reality Systems

318

16.2.2 Case Study

320

16.3 The Functional Branch

321

16.3.1 Introduction

321

16.3.2 Initiating the Development

321

16.3.3 Conceptual Specifications of Requirements

322

16.3.4 Organizational and Interaction-Oriented Specification of Requirements

323

16.3.5 Analysis

327

16.3.6 Main Points Discussed

329

16.4 The Technical Branch

329

16.4.1 Description of the Applicative Architecture

330

16.4.2 Description of the Technical Architecture

331

16.4.3 Main Points Discussed

332

16.5 The Junction of the Functional and Technical Branches

333

16.5.1 Design

333

16.5.2 Main Points Discussed

335

16.6 Conclusions and Future Work

335

References

336

Part III Applications of Mixed Reality

338

17 Enhancing Health-Care Services with Mixed Reality Systems

339

17.1 Health Care and Mixed Reality Systems

339

17.1.1 Augmented and Mixed Reality

340

17.1.2 Usability Evaluation Techniques

341

17.1.3 Security Aspects

342

17.1.4 Work Structure

342

17.2 Overview of the Development Approach

342

17.2.1 Process Evaluation of the Health-Care Service

343

17.2.2 Evaluation of the Existing Information Systems

343

17.2.3 Identification of Decision Paths and Actions That Can Benefit from Mixed Reality Systems

344

17.2.4 Implementation of the Mixed Reality System

344

17.3 System Design and Implementation

344

17.3.1 Design of the System

345

17.3.2 ASUR Model of the System

347

17.3.2.1 Real Objects (Components R)

347

17.3.2.2 Person as User (Component U)

348

17.3.2.3 Adapters (Components A)

348

17.3.2.4 Systems (Components S)

349

17.3.2.5 Relationships Between the ASUR Components of the System

349

17.3.3 Addressing Critical Aspects of Mixed Reality Systems for Health-Care Services

349

17.3.3.1 Context Awareness

350

17.3.3.2 Timeliness and High Assurance

350

17.3.3.3 Fault Tolerance

351

17.3.3.4 Interoperability

351

17.3.4 Addressing Software Design Requirements

352

17.3.4.1 Distributed and Cooperating Services

352

17.3.4.2 Security and Privacy

353

17.3.4.3 Lookup and Discovery

353

17.3.4.4 Performance and Availability

354

17.3.5 Technology Environment and Architectural Approach

354

17.4 Conclusion and Outlook

356

References

356

18 The eXperience Induction Machine: A New Paradigm for Mixed-Reality Interaction Design and Psychological Experimentation

359

18.1 Introduction

359

18.1.1 Mixed-Reality Installations and Spaces

361

18.1.2 Why Build Such Spaces? Epistemological Rationale

363

18.1.3 Mixed and Virtual Reality as a Tool in Psychological Research

365

18.1.4 Challenges of Using Mixed and Virtual Realities in Psychological Research

367

18.2 The eXperience Induction Machine

369

18.2.1 System Architecture

369

18.2.1.1 Design Principles

369

18.2.1.2 Interfaces to Sensors and Effectors

370

18.3 XIM as a Platform for Psychological Experimentation

372

18.3.1 The Persistent Virtual Community

372

18.3.2 A Space Explains Itself: The ''Autodemo''

373

18.3.3 Cooperation and Competition: Playing Football in Mixed Reality

375

18.4 Conclusion and Outlook

377

References

378

19 MyCoach: In Situ User Evaluation of a Virtual and Physical Coach for Running

382

19.1 Introduction

382

19.1.1 Virtual Trainer/Coach

383

19.2 MyCoach

384

19.3 User Experiment

386

19.3.1 Runners

386

19.3.2 Measurement

387

19.4 Results

388

19.4.1 Pre-trial Results: Running and Training Habits

388

19.4.2 During Trial Results: Use of the MyCoach System

390

19.5 Usage Data

391

19.6 Netnography

392

19.6.1 Post-trial: Evaluation of MyCoach

393

19.7 Conclusions

396

19.8 Further Development of MyCoach

396

References

397

20 The RoboCup Mixed Reality League - A Case Study

399

20.1 Introduction

399

20.2 Hardware Architecture

403

20.2.1 Micro-Robots

403

20.2.1.1 Battery Charger

406

20.2.1.2 Infrared Transmitter

407

20.2.1.3 Firmware Uploading Interface Board

407

20.2.2 Augmented Reality Display

408

20.2.3 Tracking Camera

408

20.2.4 Computer

409

20.3 Software Architecture

409

20.3.1 Vision-Tracking Module

411

20.3.2 Application Modules

411

20.3.3 Graphics Module

413

20.3.4 Robot Control Module

413

20.3.5 Agents

415

20.4 Experience

415

20.4.1 Development Process

415

20.4.2 Soccer System

415

20.4.3 Racing Application

416

20.4.4 Future Developments

417

20.5 Summary and Conclusions

417

References

417

21 Mixed-Reality Prototypes to Support Early Creative Design

419

21.1 Introduction

419

21.2 Profession-Centered Methodology and User-Centered Design

420

21.3 Context and Needs

423

21.3.1 Architectural Design

423

21.3.2 Sketch-Based Preliminary Design

425

21.3.3 Distant Collaborative Design

426

21.3.4 Why Mixed Reality Should Be a Good Way of Responding to These Needs

427

21.4 Technological Solutions

428

21.4.1 Introduction

428

21.4.2 The Virtual Desktop

428

21.4.3 EsQUIsE

431

21.4.3.1 Introduction

431

21.4.3.2 The Entry Module

431

21.4.3.3 The Interpretation Module

432

21.4.3.4 The Evaluation Module

432

21.4.4 SketSha

434

21.5 Evaluations

436

21.5.1 Usability

437

21.5.2 Sketches

437

21.5.3 Immersion

438

21.5.4 Design Process

440

21.6 Characterization of These Mixed-Reality Systems

441

21.7 Discussions

442

References

443

Index

446