Multiscale Methods in Computational Mechanics - Progress and Accomplishments

Multiscale Methods in Computational Mechanics - Progress and Accomplishments

von: Rene de Borst, Ekkehard Ramm

Springer-Verlag, 2010

ISBN: 9789048198092 , 446 Seiten

Format: PDF, OL

Kopierschutz: Wasserzeichen

Windows PC,Mac OSX geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Online-Lesen für: Windows PC,Mac OSX,Linux

Preis: 96,29 EUR

Mehr zum Inhalt

Multiscale Methods in Computational Mechanics - Progress and Accomplishments


 

Table of Contents

6

Preface

10

List of Authors

12

PART 1 Computational Fluid Dynamics

20

Residual-Based Variational Multiscale Theory of LES Turbulence Modeling

21

1 Variational Multiscale Formulation of the Incompressible Navier–Stokes Equations

21

1.1 Incompressible Navier–Stokes Equations

21

Global Space-Time Variational Formulation

22

Sliced Space-Time Variational Formulation

23

1.2 Scale Separation

24

1.3 Perturbation Series

27

2 Turbulent Channel Flow

30

3 Conclusions

32

Acknowledgements

36

References

36

A Posteriori Error Estimation for Computational Fluid Dynamics: The Variational Multiscale Approach

37

1 Introduction

37

2 The Variational Multiscale Approach to Error Estimation

38

2.1 The Abstract Problem

38

2.2 The Variational Multiscale Error Estimation Paradigm

39

3 The Smooth Paradigm for Error Estimation

40

3.1 Intrinsic Error Time Scales

41

Estimates in the L2 Norm

41

Example: One-Dimensional Advection-Diffusion

42

3.2 Error Upper Bounds

44

3.3 Relation to the Flow Time Scale Parameter

45

3.4 Extensions

45

4 Multidimensional Model

45

4.1 A Model for the Error Distribution

46

Element Interior Error

46

Element Boundary Error

46

4.2 Norms Based on the L8 Norm of the Residual

47

4.3 Summary of the Model

48

5 Multidimensional Error Scales for the Bilinear Quad

48

5.1 Hyperbolic Limit

48

5.2 Elliptic Limit

49

6 Numerical Example: L-shaped Domain Problem

50

7 Adaptivity

51

8 Conclusions

54

References

54

Advances in Variational Multiscale Methods for Turbulent Flows

57

1 Introduction

57

2 Residual-Based Variational Multiscale Method with Dynamic Subgrid Scales

59

3 The Algebraic Variational Multiscale-Multigrid Method

60

4 Using NURBS in Residual-Based Variational Multiscale Methods

62

5 Towards a Residual-Based Variational Multiscale Method for Turbulent Fluid-Structure Interaction

66

6 Conclusion

67

Acknowledgement

68

References

68

Variational Germano Approach for Multiscale Formulations

71

1 Introduction

71

2 General Discrete Germano Identity

72

2.1 Numerical Method as a Discrete Projector

72

2.2 Inverse Implication: Projector Implies Numerical Method

73

2.3 Multilevel Commutativity

74

2.4 Discrete Germano Identity

75

2.5 Partitioned Approach

76

3 Discrete Germano Approach for Stabilized Methods

76

3.1 Computation of Coarse Stabilization Parameter: Dissipation Method

77

Non-Homogenous Boundary Conditions

78

3.2 Computation of Coarse Stabilization Parameter: Least-Squares Method

78

Basis Independent Least-Squares Method

79

Basis Independent Least-Squares Method for a Spatial Varying Stability Parameter

80

3.3 Computation of Fine Stabilization Parameter

81

4 1D Convection-Diffusion

82

4.1 Stabilized Formulation

82

4.2 Stabilization Parameter Structure

82

4.3 Dissipation Method for Homogeneous Boundary Conditions

83

4.4 Dissipation Method for Non-Homogeneous Boundary Conditions

83

Reconstruction of the Lagrange Multipliers on Coarse Mesh

84

Injection of the Lagrange Multipliers from Fine Mesh

85

4.5 Naive Least-Squares Method

85

4.6 Basis-Independent Least-Squares Method

86

5 Numerical Results

86

5.1 Homogenous Boundary Conditions

86

5.2 Non-Homogenous Boundary Conditions

87

5.3 Basis Dependence of the Least-Squares Method

88

5.4 Computational Cost

89

6 Conclusion

90

Acknowledgments

90

References

91

Dissipative Structure and Long Term Behavior of a Finite Element Approximation of Incompressible Flows with Numerical Subgrid Scale Modeling

92

1 Introduction

92

2 Formulation

95

2.1 Continuous problem

95

2.2 Subgrid Scale Decomposition

96

2.3 Simplifying Assumptions

96

2.4 Final Formulation

97

3 Dissipative Structure and Backscatter

98

3.1 Local Kinetic Energy Balance Equations

98

3.2 Global Kinetic Energy Balance Equations

99

3.3 Backscatter

101

3.4 Flow over a Surface Mounted Obstacle

102

4 Long Term Stability

103

5 Long Term Simulations

105

5.1 Flow over a Plate

106

5.2 Flow around a Telescope

106

6 Conclusions

108

Acknowledgments

109

References

109

Large-Eddy Simulation of Multiscale Particle Dynamics at High Volume Concentration in Turbulent Channel Flow

111

1 Introduction

111

2 Mathematical Formulation

113

2.1 The Gas Phase

113

2.2 The Solids Phase

114

2.3 Subgrid-Modeling

118

2.4 The Numerical Method

119

3 Results

120

3.1 Turbulence Modulation

120

3.2 Effects of Collisions

121

3.3 Coherent Particle Structures

124

4 Concluding Remarks

125

Acknowledgments

126

References

127

PART 2 Materials with Microstructure

130

An Incremental Strategy for Modeling Laminate Microstructures in Finite Plasticity – Energy Reduction, Laminate Orientation and Cyclic Behavior

131

1 Introduction

131

2 Non-Convex Potentials and Relaxation

133

3 First-Order Laminate Microstructures

134

4 Incremental Numerical Scheme

139

5 Results

141

5.1 Evolution of the Internal Variables and Laminate Orientation

141

5.2 Energy Reduction

143

5.3 Cyclic Behavior

144

6 Discussion and Conclusions

146

References

146

The Micromorphic versus Phase Field Approach to Gradient Plasticity and Damage with Application to Cracking in Metal Single Crystals

149

1 Generalized Continua and Material Microstructure

149

2 Micromorphic Approach

150

2.1 Thermomechanics with Additional Degrees of Freedom

150

2.2 Non-Dissipative Contribution of Generalized Stresses and Micromorphic Model

152

Micromorphic Model

153

2.3 Viscous Generalized Stress and Phase Field Model

154

Phase Field Model

154

2.4 Elasto-Plastic Decomposition of Generalized Strains

155

3 Continuum Damage Model for Single Crystals and Its Regularization

156

3.1 Constitutive Equations

156

3.2 Microdamage Continuum

159

4 Finite Element Implementation

160

4.1 Variational Formulation and Discretization

160

4.2 Implicit Incremental Formulation

161

5 Numerical Examples

163

6 Conclusion

165

References

165

Homogenization and Multiscaling of Granular Media for Different Microscopic Constraints

168

1 Introduction

168

2 Quasi-Static Homogenization of Granular Aggregates

170

2.1 Deformation-Driven Homogenization of Microstructures

170

Definition of Particle Microstructures

170

Microscopic Boundary Conditions

171

Microscopic Equilibrium State

173

Macroscopic Boundary Conditions

176

2.2 Penalty-Type Implementation of Boundary Constraints

176

3 Microstructural Modeling of Granular Materials

178

3.1 Micromechanical Model for Interparticle Contact

178

3.2 Dynamic Relaxation of the Microstructural Response

179

4 Numerical Examples and Comparative Study

180

4.1 Specification of Basic Micromechanical Functions

181

4.2 Compression-Shear Mode for Cubic Microstructures

181

5 Multiple Scale Simulation of a Granular Medium

184

5.1 Two-Scale Simulations Based on DE-FE Coupling

184

5.2 Simulation of a Biaxial Compression Test of a Soil

185

Experimental Setup

185

Coupled FE-DE Two-Scale Model

185

Results and Discussion

186

6 Conclusion

188

Acknowledgement

188

References

188

Effective Hydraulic and Mechanical Properties of Heterogeneous Media with Interfaces

191

1 Introduction

191

2 Hydraulic Model for a Porous Matrix with Impermeable Inclusionary Phase

192

2.1 Mori–Tanaka Estimate

193

2.2 The Variational Approach

196

2.3 The Self-Consistent Approach

198

3 Mechanical Model for a Granular Cemented Rock

200

3.1 General Framework

200

3.2 The Self-Consistent Homogenization Scheme

202

4 Concluding Remarks

205

References

205

An Extended Finite Element Method for the Analysis of Submicron Heat Transfer Phenomena

207

1 Introduction

207

2 Level-Set Description of Material Layout

211

3 Gray Phonon Model

211

4 Discretization Methods

214

4.1 Discrete Ordinate Method

214

4.2 Extended Finite Element Method

215

4.3 Lagrange Multiplier Method

216

5 Numerical Examples

217

5.1 Verification Example

218

5.2 Analysis of Nano-Composites

218

5.3 Design Study

220

6 Conclusions

221

Acknowledgments

222

References

223

PART 3 Composites, Laminates, and Structures: Optimization

225

Multiscale Modeling and Simulation of Composite Materials and Structures

226

1 Introduction

226

2 Information-Passing Multiscale Approaches in Space

230

2.1 Direct Mathematical Homogenization for Nonlinear Problems

230

2.2 Eigendeformation-Based Reduced Order Homogenization

232

3 Concurrent Multiscale Methods in Space

234

3.1 Multiscale Enrichment Based on Partition of Unity (MEPU)

235

3.2 Adaptive Model Selection

236

3.3 Numerical Example

236

4 Temporal Multiscale Model for Fatigue Life Prediction

237

References

240

Multiscale Modelling of the Failure Behaviour of Fibre-Reinforced Laminates

243

1 Introduction

243

2 Review of the Interface Damage Model

245

3 Mesoscale Simulations of a Centre-Cracked 2/1 GLARE Laminate

247

3.1 Geometry and Boundary Conditions

247

3.2 Results for a 2/1 Lay-up with Elastic Aluminium Layers

250

3.3 Results for a 2/1 Lay-up with Elasto-Plastic Aluminium Layers

253

4 Microscale Simulations of Single-Fibre Epoxy Systems

255

4.1 Fibre-Epoxy Interfacial Strength versus Epoxy Strength

256

5 Microscale Simulations of Multiple-Fibre Epoxy Systems

259

5.1 Influence of the Fibre Volume Fraction

259

6 Coupling between Microscale and Mesoscale Crack Modelling

260

6.1 Fibre-Epoxy Specimen Subjected to Uniaxial Tension

263

6.2 Influence of Sample Size

264

6.3 Influence of Imperfections

265

7 Concluding Remarks

266

Acknowledgements

268

References

268

Improved Multiscale Computational Strategies for Delamination

270

1 Introduction

270

2 Application of the Two-Scale Domain Decomposition Strategy to Delamination Analysis

272

2.1 The Substructured Delamination Problem

272

2.2 Two-Scale Iterative Resolution of the Substructured Problem

275

Introduction of the Macroscopic Scale

275

The Iterative Algorithm

275

2.3 First Example of a Delamination Analysis

278

3 Analysis of the Parameters of the Iterative Algorithm

280

4 The Three-Scale Domain Decomposition Strategy

281

4.1 Resolution of the Macroproblem through the Balancing Domain Decomposition Method

281

Partitioning of the Macroproblem

281

Resolution of the Super-Interface Problem

283

4.2 Results

283

5 Efficiency of the Strategy: Study of a Complex Test Case

284

6 Conclusion

286

References

286

Damage Propagation in Composites – Multiscale Modeling and Optimization

289

1 Introduction

289

2 Modeling of Discontinuities on Small Scale

291

2.1 Geometrical Description

291

2.2 Kinematic Description

292

2.3 Cohesive Law

293

2.4 Numerical Examples

294

Two-Phase Material under Tension [13]

294

Pull-out of Fiber in Matrix

295

3 Multiscale Formulation [11, 12]

295

3.1 Formulation Using Continuum Damage

296

Material Model

296

Concept

296

Numerical Examples [11]

299

3.2 Discontinuum Model in Multiscale Formulation

302

Concept

302

Numerical Examples [13]

303

4 Optimal Fiber Layout [18–20]

304

4.1 Material Model

305

4.2 Optimization Concept

306

4.3 Multiphase Material Optimization

306

4.4 Shape Optimization of Fiber Geometry

307

4.5 Numerical Examples

307

Multiphase Material Optimization for a Beam

307

Multiphase and Shape Optimization for Deep Beam

308

5 Conclusions

309

Acknowledgement

310

References

310

Computational Multiscale Model for NATM Tunnels: Micromechanics-Supported Hybrid Analyses

313

1 Introduction

313

2 Continuum Micromechanics of Microheterogeneous Materials

315

2.1 Representative Volume Element (Separation of Scales)

315

2.2 Homogenization of Elasticity

316

2.3 Homogenization of Strength

317

3 Micromechanics at the Cement Paste Level

318

3.1 Micromechanical Representation

318

3.2 Constitutive Behavior of Clinker, Water, Hydrates, and Air

319

3.3 Homogenized Elasticity of Cement Paste

320

3.4 Homogenized Strength of Cement Paste

321

4 Micromechanics at the Shotcrete Level

322

5 Experimental Validation of Micromechanics-Based Material Models

323

5.1 Mixture-Dependent Shotcrete Composition

323

5.2 Experimental Validation on Shotcrete Level

323

6 Micromechanics-Based Studies: Influence of Water-Cement and Aggregate-Cement Ratios on Evolutions of Elasticity and Strength of Shotcrete

324

7 Continuum Micromechanics-Based Safety Assessment of NATM Tunnel Shells

325

7.1 Water-Cement Ratio-Dependence of Structural Safety

328

7.2 Aggregate-Cement Ratio-Dependence of Structural Safety

328

8 Conclusions

330

Acknowledgements

331

References

331

Optimization of Corrugated Paperboard under Local and Global Buckling Constraints

337

1 Introduction

337

2 Problem Description and Methods Used

339

2.1 Unit Cell Approach

339

2.2 Formulation of the Optimization Problem

346

2.3 Homogenization Process Using Unit Cell Models

347

2.4 Unit Cell Approach for Local Buckling Analysis

347

2.5 Numerical Meso Structural Optimization Approach

348

3 Results of Optimization

349

4 Fold Formation in the Post-Buckling Regime

351

5 Conclusions

353

References

353

Framework for Multi-Level Optimization of Complex Systems

355

1 Introduction

355

2 A Unifying Multi-Level Notation

356

3 Decomposition

361

3.1 Physical Coupling

361

3.2 Problem Matrix

363

4 Coordination

370

5 Software Framework

372

6 Supersonic Business Jet Optimization

373

6.1 Multi-Level Optimization Problem

374

Hierarchic Decomposition

376

Non-Hierarchic Decomposition

378

Coordination

379

6.2 Numerical Results

380

Results

380

7 Conclusions

384

Acknowledgments

385

References

385

PART 4 Coupled Problems and Porous Media

386

Multiscale/Multiphysics Model for Concrete

387

1 Introduction

387

2 General Mathematical Model

388

3 Effective Stress Principle

391

4 Application of the Model to Concrete Structures at Elevated Temperature

393

4.1 Simulation of a Concrete Column under Fire with Fast Cooling

397

5 Application of the Model to Concrete Structures Subject to Leaching Process

402

5.1 Modelling Kinetics of Calcium Leaching Process

402

5.2 Numerical Simulation of the Non-Isothermal Leaching Process in a Concrete Wall

406

6 Conclusions

407

References

408

Swelling Phenomena in Electro-Chemically Active Hydrated Porous Media

411

1 Introduction

411

2 TPM Fundamentals

413

2.1 Immiscible Components and Volume Fractions

413

2.2 Miscible Components and Molar Concentrations

413

2.3 Constituent Balance Relations

414

3 Swelling Media as Biphasic, Four-Component Aggregates

415

3.1 Restrictions Obtained from the Entropy Inequality

417

3.2 The Fluid Components

419

3.3 Ion Diffusion and Fluid Flow

420

3.4 The Electrical Potential

422

3.5 The Solid Skeleton

422

4 Weak Forms and Basic Numerical Setting

423

5 Numerical Examples

424

5.1 Free Swelling Hydrogel

424

5.2 Electro-Active Polymers

426

5.3 Borehole Instability in Active Soil

427

5.4 Swelling of an Intervertebral Disc

427

6 Conclusion

429

References

429

Propagating Cracks in Saturated Ionized Porous Media

431

1 Introduction

431

2 Bulk Material

433

3 Discontinuity in the Solid Part

436

3.1 Cohesive Zone

436

3.2 Nonlocal Stress

437

4 Shearing Mode

438

4.1 Discontinuity in the Fluid Part

438

4.2 Numerical Example

439

5 Tensile Mode

441

5.1 Discontinuity in the Fluid Part

441

5.2 Numerical Example

443

6 Concluding Remarks

445

List of Symbols

445

Acknowledgement

446

References

446

Author Index

449

Subject Index

450