Rubber Technology - Compounding and Testing for Performance

von: John S. Dick

Carl Hanser Fachbuchverlag, 2014

ISBN: 9783446439733 , 568 Seiten

Format: PDF, OL

Kopierschutz: Wasserzeichen

Windows PC,Mac OSX Apple iPad, Android Tablet PC's Online-Lesen für: Windows PC,Mac OSX,Linux

Preis: 159,99 EUR

Mehr zum Inhalt

Rubber Technology - Compounding and Testing for Performance


 

Preface

6

Contents

8

Contributers

22

1 Rubber Compounding: Introduction, Definitions, and Available Resources

26

1.1 Introduction

26

1.2 The Recipe

27

1.3. Classification of Rubber Compounding Ingredients

28

1.4 Standard Abbreveiations for Compounding Ingredients

29

1.5 The Diversity of Rubber Recipes

29

1.6 Compatibility of Compounding Ingredients

30

1.7 Rubber Compounding Ingredients' Specifications

32

1.8 Raw Material Source Books

32

1.9 Key Source References for Formulations

34

1.10 Technical Organizations

35

1.11 Key Technical Journals and Trade Magazines

36

1.12 Regurarly Scheduled Technical Conferences

38

1.12.1 Regurarly Scheduled Courses

38

1.13 Web Sites Available

39

2. Compound Processing Characteristics and Testing

42

2.1 Introduction

42

2.2 Manufacturing Process

42

2.2.1 Two Roll Mill

42

2.2.2 Internal Mixers

42

2.2.3 Further Downstream Processing

44

2.2.4 Curing Process

45

2.2.5 Factory Problems

45

2.3 Processability Characteristics and Measurements

46

2.3.1 Viscosity

47

2.3.2 Shear Thinning

52

2.3.3 Elasticity

54

2.3.4 Time to Scorch

58

2.3.5 Cure Rate

61

2.3.6 Ultimate State of Cure

64

2.3.7 Reversion Resistance

65

2.3.8 Green Strength

66

2.3.9 Tackiness

67

2.3.10 Stickiness

67

2.3.11 Dispersion

67

2.3.12 Stock Storage Stability

68

2.3.13 Mis-Compounding

68

2.3.14 Cellular Rubber Blow Reaction

68

3 Vulcanizate Physical Properties, Performance Charecteristics, and Testing

71

3.1 Introduction

71

3.2 Density

71

3.3. Hardness

72

3.4 Tensile Stress-Strain

73

3.5 Stress-Strain Properties under Compression

74

3.6 Stress Strain Properties under Shear

75

3.7 Dynamic Properties

75

3.8 Low Temperature Properties

78

3.8.1 Brittle Point

79

3.8.2 Gehman Test

79

3.9 Stress Relevation, Creep, and Set

80

3.10 Permeability (Transmission)

82

3.11 Cured Adhesion

82

3.12 Tear Resistance

83

3.13 Degredation Properties

85

3.13.1 Flex Fatigue Resistance

85

3.13.2 Heat Resistance

87

3.13.3 Ozone Resistance

89

3.13.4 Weathering Resistance

90

3.13.5 Resitance of Liquids

90

3.13.6 Abrasion and Wear Resistance

91

4 Rubber Compound Economics

94

4.1. Introduction

94

4.2. Compound Cost Calculations

94

4.2.1 Specific Gravity

94

4.2.2 Cost/lb

95

4.2.3 Lb-Volume Cost

95

4.2.4 Part Cost

95

4.2.5 Conversion Factors for Calculating Part Cost

95

4.3 Measuring Specific Gravity (Density)

97

4.4 Cost Calculations

97

4.4.1 Base Compound

97

4.4.2 Same Ingredient Volume and Equal Cost

98

4.4.3 Low Cost/lb

98

4.4.4 High Specific Gravity

99

4.5 Compound Design and Cost

100

4.6 Reducing Compound Cost

100

4.6.1 High-Structure Carbon Blacks

101

4.6.2 White Compounds

101

4.6.3 Antioxidants/Antiozonants

101

4.6.4 Polymer Substitutions

102

5 The Technical Project Approach to Experimental Design and Compound Development

111

5.1 Introduction

111

5.2 Part 1: Steps in a Technical Project

113

5.2.1 Initial Action Required

113

5.2.2 Experimental Design

113

5.2.3 Conduct Measurements

120

5.2.4 Conduct Analysis and Evaluate Preliminary Modell

121

5.2.5 Prepare Report

121

5.3 Part 2: Using Experimental Designs

121

5.3.1 Screening Designs - Simple Treatment Comparisons

121

5.3.2 Screening Designs - Multifactor Experiments

124

5.3.3 Exploratory Designs - Multifactor Experiments

128

5.3.4 Evaluating the Statistical Significance of Effect Coefficients

129

6 Elastomer Selection

150

6.1 Overview

150

6.1.1 Commodity and General Purpose Elastomers

150

6.1.2 High Volume Specialty Elastomers

155

6.1.3 Low Volume Specialty Elastomers

160

6.1.4 Thermoplastic Elastomers

164

7 General Purpose Elastomers and Blends

166

7.1 Introduction

166

7.2 Natural Rubber and Polyisoprene

166

7.3 Polybutadiene

169

7.4 Copolymers and Terpolymers of Styrene, Butadiene, and Isoprene

172

7.5 Compounding with General Purpose Polymers

175

7.5.1 Polymer Characterization

176

7.5.2 Polymer Effect on Cure Rate

178

7.5.3 Polymer Effect on Stress-Strain

181

7.5.4 Hysteresis

182

7.5.5 Compability with SIR 10

190

7.5.6 Fatigue Properties

194

7.5.7 Compression Set

195

7.6 Conclusion

196

8 Specialty Elastomers

198

8.1 Introduction

198

8.2 Butyl Rubber

198

8.2.1 Introduction

198

8.2.2 Butyl Rubber Physical Properties

199

8.2.3 Butyl Rubber Properties, Vulcanization, and Applications

199

8.2.4 Gas Permeabiltity

200

8.2.5 Ozone and Weathering Resistance

201

8.2.6 Butyl Rubber Vulcanization

201

8.3 Halogenated Butyl Rubber

203

8.3.1 Introduction

203

8.3.2 Compounding Halobutyl and Star-Branched Halobutyl Rubbers

204

8.3.3 Processing Halobutyl Rubber

206

8.3.4 Halobutyl Rubber Vulcanization and Applications

207

8.3.5 Halobutyl Rubber General Applications

210

8.3.6 Cured Properties

211

8.3.7 Flex Resistance/Dynamic Properties

211

8.3.8 Compatibility with Other Elastomers

212

8.3.9. Halobutyl Rubber Compound Applications

212

8.4 EPM/EPDM

215

8.4.1 Introduction

215

8.4.2 Ethylene/Propylene Content

215

8.4.3 Diene Content

216

8.4.4 Rheology

217

8.5 Acrylonitrile-Butadiene Rubber

218

8.5.1 Introduction

218

8.5.2 Chemical and Physical Properties - Relating to Application

218

8.5.3 Polymer (Elastomer) Microstructure

221

8.5.4 Polymer (Elastomer) Macrostructure

221

8.5.5 Gel

221

8.5.6 Molecular Weight

222

8.5.7 Hot NBR

222

8.5.8 Crosslinked Hot NBR

223

8.5.9 Cold NBR

223

8.5.10 Carboxylated Nitrile (XNBR)

223

8.5.11 Bound Antioxidant NBR

224

8.6 Hydrogenated Nitrile Butadiene Elastomers

226

8.6.1 Introduction

226

8.6.2 Applications

227

8.6.3 Properties

227

8.6.4 Formulating

227

8.6.5 Processing

228

8.7 Polyacrylate Elastomers

228

8.7.1 Polymer Composition

228

8.7.2 Basic Compounding of Polyacrylate Polymers

230

8.7.3 Processing Guidelines

231

8.8 Polychloroprene (Neoprene)

232

8.8.1 Introduction

232

8.8.2 Basic Characteristics of Polychloroprene

233

8.8.3 Families of Neoprene

233

8.8.4 Neoprene 'G' Family

233

8.8.5 Neoprene 'W' Family

235

8.8.6 Neoprene 'T' Family

236

8.9 Chlorinated Polyethylene (CM)

236

8.9.1 Introduction

236

8.9.2 General Characteristics

237

8.10 Chlorosulfonated Polyethylene (CSM)

238

8.10.1 Introduction

238

8.10.2 General Purpose Types of Hypalon

240

8.10.3 Speciality Types of Hypalon

240

8.10.4 Unvulcanized Applications

241

8.11 Polyepichlorohydrin Elastomer

241

8.11.1 Introduction

241

8.11.2 Properties

241

8.11.3 Formulating

242

8.11.4 Nonlead Cure System

243

8.11.5 Adjustments

243

8.11.6 Processing

243

8.11.7 Internal Mixer - Procedure

244

8.11.8 Extrusion

244

8.11.9 Molding

244

8.12 Ethylene-Acrylic Elastomers

246

8.12.1 Introduction

246

8.12.2 Polymer Composition and Effect on Properties

247

8.12.3 Polymer Selection

248

8.13 Polynorbornene

249

8.13.1 Introduction

249

8.13.2 Applications

249

8.13.3 Compounding

250

8.13.4 Fillers

250

8.13.5 Oils/Plastizers

250

8.13.6 Cure System

250

8.13.7 Rebound/Resilience

251

8.13.8 Vibration Damping

251

8.13.9 Blends

251

8.13.10 Mixing and Processing

251

8.13.11 Calendaring

252

8.13.12 Extrusion

252

8.13.13 Molding

254

8.13.14 Summary

254

8.14 Fluoroelastometer

254

8.14.1 Introduction

254

8.14.2 Background

254

8.14.3 Applications

256

8.14.4 Viton Types

256

8.15 Silicone Elastomers

260

8.15.1 Introduction

260

8.15.2 Selection

260

8.15.3 Fillers

260

8.15.4 Antistructuring Agents

261

8.15.5 Heat Stabilizers

261

8.15.6 Peroxide Cures

261

8.15.7 Platinum Cures

262

8.15.8 RTV Cures

262

9 Polyurethane Elastomers

263

9.1 Introduction

263

9.2 Polyurethane Chemistry ans Morphology

263

9.3 Polyurethane Products

266

9.4 Cast Polyurethane Processing Overview

267

9.5. Molding Methods

269

9.5.1 Open Casting

269

9.5.2 Centrifugal Molding

270

9.5.3 Vacuum Casting

270

9.5.4 Compression Molding

270

9.5.5 Transfer Molding

270

9.5.6 Liquid Injection Molding (LIM)

271

9.5.7 Spraying

271

9.5.8 Moldless Rotational Casting

271

9.6. How to select a Polyurethane Elastomer

271

9.6.1 Types of Prepolymers

272

9.6.2 Types of Curatives

274

9.6.3 Processing Conditions

275

9.6.4 Additives

277

9.7 Comparison of Polyuethanes with Other Elastomers

278

9.7.1 Limitations of Polyuerthane Elastomers

280

9.8 Polyuerthane Selection Guidelines

282

9.8.1 Selecting a Polyuerthane Elastomer for a New Application

285

9.9 Millable Gums

286

9.10 Thermoplastic Polyuethanes

287

10 Thermoplastic Elastomers

289

10.1 Introduction

289

10.2 Position in Spectrum of Polymeric Materials

289

10.3 Classification of TPEs

290

10.3.1 Chemistry and Morphology

290

10.3.2 Styrenic Block Copolymers

293

10.3.3 Copolysters

295

10.3.4 Thermoplastic Polyurethanes

296

10.3.5 Polyamides

297

10.3.6 Thermoplastic Elastomeric Olefins

298

10.3.7 Thermoplastic Vulcanizates

299

10.4 TPEs and Thermoset Rubbers

301

10.5 Fabrication of TPEs

303

10.5.1 Economy of Thermoplastics Processing

303

10.5.2 Injection Molding

303

10.5.3 Extrusion

303

10.5.4 Blow Molding

305

10.5.5 Other Processing Methods

306

10.6 Acknowledgments

306

11 Recycled Rubber

309

11.1 Introduction

11.1 Introduction

11.1.1 Tire Derived Fuel

11.1.1 Tire Derived Fuel

11.1.2 Automotive Industry's Recycling Efforts

11.1.2 Automotive Industry's Recycling Efforts

11.2 Recycling Methods

311

11.2.1 Reclaiming

311

11.2.2 Ambient Ground Rubber

312

11.2.3 Cyrogenic Ground Rubber

313

11.2.4 Wet Ground Rubber

317

11.2.5 Surface Treatment and Additives for Producing Recycled Rubber

317

11.3 Testing, Storage, and Characterization

317

11.3.1 Testing STandards

317

11.3.2 Material Storage

318

11.3.3 Moisture Content

318

11.3.4 Bulk Density

318

11.3.5 Chemical Analysis and Material Specifications

318

11.3.6 Particle Size and Distribution

319

12 Compounding with Carbon Black and Oil

322

12.1 Introduction: Carbon Black Affects Everything

322

12.2 Characterization of Carbon Black

322

12.2.1 The Particle, the Aggregate, and the Agglomerate

323

12.2.2 Surface Area, Structure, and Surface Acticity

323

12.2.3 Continents Other than Carbon (Impurities)

325

12.2.4 Pellets

326

12.2.5 ASTM Nomenclature

326

12.3 Handling Carbon Black

328

12.4 Mixing Carbon Black

328

12.4.1 Pellet Properties and Analyticals

328

12.4.2. Effect of Analytics on Dispersion

328

12.4.3 The Mixing Process

329

12.5 Subsequent Processability of the Company

331

12.6 Compounding Carbon Black

331

12.6.1 Optimum Loading

331

12.6.2 Importance of Dispersion

334

12.6.3 Carbon Black Compounding Tips

335

12.6.4 The Tire Industry's Tradeoffs

339

12.7 Hysteresis Reducing Tips

341

12.7.1 Radical Compounding

341

12.7.2 Lower Loadings of High Structure

342

12.7.3 Carbon-Silica Dual Phase Fillers

343

12.8 Practical Applications: Tire Examples

343

12.8.1. OE Passenger

343

12.8.2 Replacement Passenger-Tire

343

12.8.3 HP Passenger-Tire Treads

344

12.8.4 Medium Radial Truck Treads

344

12.8.5 Wire Coat or Skim Stocks

344

12.8.6 Innerliner Compounding

344

12.9 Major Tradcoffs for Industrial Rubber Products

345

12.9.1 Loading/Reinforcement/Cost

345

12.10 Compounding Tips: Industrial Rubber Products

345

12.10.1 Extrusion Profiles and Products

345

12.10.2 Molded Products

346

12.10.3 Hose Applications

346

12.11 Basics of Carbon Black Manufacture

347

12.11.1 History

347

12.11.2 The Oil-Furnace Process

347

13 Precipated Silicia and Non-Black Fillers

350

13.1 Introduction

350

13.2 Mineral Fillers

350

13.2.1 Calcium Carbonate

351

13.2.2 Baryte

351

13.2.3 Ground Crystalline SIlica

351

13.2.4 Biogenic Silica

352

13.2.5 Kaolin Clay

352

13.2.6 Talc

13.2.6 Talc

13.2.7 Alumina Trihydrate

353

13.3 Synthetic Fillers

353

13.3.1 Precipated Calcium Carbonate

354

13.3.2 Metal Oxides

354

13.3.3. Precipated Silica

354

13.3.4 Silicates

356

13.4 Surface Treatment

356

13.5 Compound Applications

357

13.5.1 General Compounding Principles

358

13.5.2 White Sidewall

359

13.5.3 Black Sidewall

361

13.5.4 Wire Coat

361

13.5.5 Innerliner

364

13.5.6 Tread

365

13.5.7 Specialty Applications

366

14 Ester Plasticizers and Processing Additives

369

14.1 Ester Plasticizers for Elastomers

369

14.1.1 Derivation

369

14.1.2 Philosophical

372

14.1.3 Applications

373

14.1.4 Applicatum Trends

385

14.2 Process Additives

388

14.2.1 Control of Viscosity

389

14.2.2 Mode of Action of Process Additives

394

14.2.3 Application of Process Additives

398

15 Sulfur Cure System

405

15.1 Introduction and Historical Background

405

15.2 Vulcanizing Agents

406

15.3. Activators

407

15.4. Accelerators

408

15.5 Conventional, Semi-Efficient

411

15.6 Retarders and Inhibitors

412

15.7 Recent Developments

414

16 Cures for Specialty Elastomers

420

16.1 Introduction

420

16.2 Cure System for EPDM

420

16.3 Cure Systems for Nitrile

422

16.4 Cure Systems for Polychloroprene

425

16.5 Cure Systems for Butyl and Halobutyl Rubber

427

17 Peroxide Cure Systems

436

17.1 Introduction

436

17.1.1 What is an Organic Peroxide?

17.1.1 What is an Organic Peroxide?

17.1.2 Classes of Organic Peroxides

17.1.2 Classes of Organic Peroxides

17.1.3 General Peroxide Selection Guidelines

17.1.3 General Peroxide Selection Guidelines

17.2 Peroxide Used in Crosslinking

445

17.2.1 Diacyl Peroxides

17.2.1 Diacyl Peroxides

17.2.2 Peroxyester and Monoperoxycarbonate Peroxides

17.2.2 Peroxyester and Monoperoxycarbonate Peroxides

17.2.3 Peroxyketal and Dialkyl Type Peroxides

17.2.3 Peroxyketal and Dialkyl Type Peroxides

17.2.4 Performance Characteristics of Type Peroxides

17.2.4 Performance Characteristics of Type Peroxides

17.2.5 t-Amyl and t-Butyl Type Peroxides

17.2.5 t-Amyl and t-Butyl Type Peroxides

17.2.6 Effect of Additives When Crosslinking with Peroxides

17.2.6 Effect of Additives When Crosslinking with Peroxides

17.3 Role of Monomeric Coagnets in Peroxide Crosslinking

455

17.3.1 Crosslinking PE with Coagentsand Peroxides

457

17.3.2 Crosslinking EPDM with Coagents and Peroxides

17.3.2 Crosslinking EPDM with Coagents and Peroxides

17.3.3 Crosslinking HNBR with Coagents and Peroxides

17.3.3 Crosslinking HNBR with Coagents and Peroxides

17.4 Advantages and Disadvantages of Peroxide Crosslinking versus Sulfur Vulcanization

459

18 Tackifiying, Curing, and Reinforcing Resins

463

18.1 Introduction

463

18.2 Phenol-Formaldehyde Resins

463

18.2.1 Types of Phenol-Formaldehyde Resins

18.2.1 Types of Phenol-Formaldehyde Resins

18.3 Methylene Donor Resins

470

18.4 Resorcinol-Based Resins

471

18.5 High Styrene Resins

471

18.6 Petroleum-Derived Resins

471

18.7 Wood-Derived Resins

471

19 Antidegredants

473

19.1 Introduction

473

19.2 Properties of Antidegredants

474

19.2.1 Discoloration and Staining

474

19.2.2 Volatility

474

19.2.3 Solubility and Migration

474

19.2.4 Chemical Stability

475

19.2.5 Physical Form

476

19.2.6 Antidegradant Concentration

476

19.3 Antidegradant Types

476

19.3.1 Non Staining, Non Discoloring Antioxidants

477

19.3.2 STaining/DIscoloring Antioxidants

479

19.3.3 Antioxidants

481

19.4 Examples of Antidegradant Activity

483

19.4.1 Oxidation Resistance

483

19.4.2 Effect of Antidegradants on Fatigue Life

483

19.4.3 Combinations of Antiozonants and Antioxidants

485

19.4.4 Resistance to Metal Poisoning

486

20 Compounding for Brass WIre Adhesion

489

20.1 Introduction

489

20.2 WIre Bonding Sytems

489

20.2.1 Cobalt

490

20.2.2 RF Resin Cobalt

490

20.3 The Adhesion Mechanism

491

20.4 Compound Ingredient Effects

491

20.4.1 Mixing

492

20.4.2 Testing

492

20.4.3 Regression Plots

493

20.5 Model NR Ply Compounds

498

20.5.1 Black Control Compound

498

20.5.2 Black/Cobalt Compund

498

20.5.3 Black/Cobalt/RF Resin

499

20.5.4 Black/Silica/Cobalt/RF Resin

499

20.6 Summary

499

21 Chemical Blowing Agents

501

21.1 Introduction

501

21.2 Terminology

501

21.2.1 Open Cell Structure

502

21.2.2 Closed Cell Structure

502

21.3 Inorganic Blowing Agents

503

21.4 Organic Blowing Agents

503

21.4.1 Azodicarbonamide

504

21.4.2 Sulfonyl Hydrazides

509

21.4.3 Dinitrosopentamethylenetetramine

509

21.5 Methods of Expansion

511

21.5.1 Low Pressure Molding Process

511

21.5.2 High Pressure Molding Process

511

21.5.3 Continuous Vulcanization

512

22 Flame Retardants

514

22.1 Introduction

514

22.2 Fire Standards, Testing, and Application

514

22.3 Commonly Used Flame Retardants in Elastomers

516

22.3.1 Aliphatic and Alicyclic Halogen Sources

516

22.3.2 Aromatic Halogen Sources

516

22.3.3 Synergists of Halogen Sources

516

22.4 Compounding and Dispersion Considerations

518

22.4.1 Polychloroprene

519

22.4.2 Chlorinated Polyethylene (CM)

520

22.4.3 Chlorosulfonated Polyethylene (CSM)

521

22.4.4 Ethylene-Propylene-Diene-Monomer (EPDM)

521

22.4.5 Styrene-Butadiene (SBR)

524

22.4.6 Nitrile-Butadiene Rubber (NBR) and Hydrogenated-Nitrile-Butadiene Rubber (HNBR)

524

22.4.7 Silicone Elastomer

525

22.4.8 Ethylene-Vinyl Acetate (EVM)

526

22.4.9 Ethylene-Propylene Elastomer (EPR)

527

22.4.10 Thermoplastic Elastomers (TPE)

527

23 Rubber Mixing

529

23.1 Introduction

529

23.2 History

529

23.3 Equipment

530

23.3.1 Mills

530

23.3.2 Internal Mixers

530

23.4 Mixing

535

23.4.1 Mill Mixing

535

23.4.2 Internal Mixer

536

23.5 Mixing Methods

539

23.5.1 Natural Rubber Mastication

539

23.5.2 Masterbatch

540

23.5.3 Phase Mixing

540

23.5.4 Single-Stage Mix

542

23.5.5 Single-Cycle Mix

542

23.5.6 Two-Stage Mix

542

23.5.7 Tandem Mix

542

23.5.8 Three-Stage Mix

543

23.5.9 Upside Down Mix

543

23.5.10 Variable Speed Mixing

543

23.5.11 Final Mix

544

23.5.12 Conntinous Mixing

545

23.5.13 E-SBR Carbon Black Masterbatch

545

23.5.14 Energy Mixing

546

Index

548