Statistical Theory and Modeling for Turbulent Flows

Statistical Theory and Modeling for Turbulent Flows

von: P. A. Durbin, B. A. Pettersson Reif

Wiley, 2010

ISBN: 9780470972069 , 376 Seiten

Format: PDF, OL

Kopierschutz: DRM

Windows PC,Mac OSX Apple iPad, Android Tablet PC's Online-Lesen für: Windows PC,Mac OSX,Linux

Preis: 89,99 EUR

Mehr zum Inhalt

Statistical Theory and Modeling for Turbulent Flows


 

Statistical Theory and Modeling for Turbulent Flows

3

Contents

9

Preface

13

Preface to second edition

13

Preface to first edition

13

Motivation

14

Epitome

15

Acknowledgements

15

Part I FUNDAMENTALS OF TURBULENCE

17

1 Introduction

19

1.1 The turbulence problem

20

1.2 Closure modeling

25

1.3 Categories of turbulent flow

26

Exercises

30

2 Mathematical and statistical background

31

2.1 Dimensional analysis

31

2.1.1 Scales of turbulence

34

2.2 Statistical tools

35

2.2.1 Averages and probability density functions

35

2.2.2 Correlations

41

2.3 Cartesian tensors

50

2.3.1 Isotropic tensors

52

2.3.2 Tensor functions of tensors; Cayley–Hamilton theorem

53

Exercises

58

3 Reynolds averaged Navier–Stokes equations

61

3.1 Background to the equations

62

3.2 Reynolds averaged equations

64

3.3 Terms of kinetic energy and Reynolds stress budgets

65

3.4 Passive contaminant transport

70

Exercises

72

4 Parallel and self-similar shear flows

73

4.1 Plane channel flow

74

4.1.1 Logarithmic layer

77

4.1.2 Roughness

79

4.2 Boundary layer

81

4.2.1 Entrainment

85

4.3 Free-shear layers

86

4.3.1 Spreading rates

92

4.3.2 Remarks on self-similar boundary layers

92

4.4 Heat and mass transfer

93

4.4.1 Parallel flow and boundary layers

94

4.4.2 Dispersion from elevated sources

98

Exercises

102

5 Vorticity and vortical structures

107

5.1 Structures

109

5.1.1 Free-shear layers

109

5.1.2 Boundary layers

113

5.1.3 Non-random vortices

118

5.2 Vorticity and dissipation

118

5.2.1 Vortex stretching and relative dispersion

120

5.2.2 Mean-squared vorticity equation

122

Exercises

124

Part II SINGLE-POINT CLOSURE MODELING

125

6 Models with scalar variables

127

6.1 Boundary-layer methods

128

6.1.1 Integral boundary-layer methods

129

6.1.2 Mixing length model

131

6.2 The k –å model

137

6.2.1 Analytical solutions to the k –å model

139

6.2.2 Boundary conditions and near-wall modifications

144

6.2.3 Weak solution at edges of free-shear flow; free-stream sensitivity

151

6.3 The k –ù model

152

6.4 Stagnation-point anomaly

155

6.5 The question of transition

157

6.5.1 Reliance on the turbulence model

160

6.5.2 Intermittency equation

161

6.5.3 Laminar fluctuations

163

6.6 Eddy viscosity transport models

164

Exercises

168

7 Models with tensor variables

171

7.1 Second-moment transport

171

7.1.1 A simple illustration

172

7.1.2 Closing the Reynolds stress transport equation

173

7.1.3 Models for the slow part

175

7.1.4 Models for the rapid part

178

7.2 Analytic solutions to SMC models

185

7.2.1 Homogeneous shear flow

185

7.2.2 Curved shear flow

188

7.2.3 Algebraic stress approximation and nonlinear eddy viscosity

192

7.3 Non-homogeneity

195

7.3.1 Turbulent transport

196

7.3.2 Near-wall modeling

197

7.3.3 No-slip condition

198

7.3.4 Nonlocal wall effects

200

7.4 Reynolds averaged computation

210

7.4.1 Numerical issues

211

7.4.2 Examples of Reynolds averaged computation

214

Exercises

229

8 Advanced topics

233

8.1 Further modeling principles

233

8.1.1 Galilean invariance and frame rotation

235

8.1.2 Realizability

237

8.2 Second-moment closure and Langevin equations

240

8.3 Moving equilibrium solutions of SMC

242

8.3.1 Criterion for steady mean flow

243

8.3.2 Solution in two-dimensional mean flow

244

8.3.3 Bifurcations

247

8.4 Passive scalar flux modeling

251

8.4.1 Scalar diffusivity models

251

8.4.2 Tensor diffusivity models

252

8.4.3 Scalar flux transport

254

8.4.4 Scalar variance

257

8.5 Active scalar flux modeling: effects of buoyancy

258

8.5.1 Second-moment transport models

261

8.5.2 Stratified shear flow

262

Exercises

263

Part III THEORY OF HOMOGENEOUS TURBULENCE

265

9 Mathematical representations

267

9.1 Fourier transforms

268

9.2 Three-dimensional energy spectrum of homogeneous turbulence

270

9.2.1 Spectrum tensor and velocity covariances

271

9.2.2 Modeling the energy spectrum

273

Exercises

282

10 Navier–Stokes equations in spectral space

285

10.1 Convolution integrals as triad interaction

285

10.2 Evolution of spectra

287

10.2.1 Small-k behavior and energy decay

287

10.2.2 Energy cascade

289

10.2.3 Final period of decay

292

Exercises

293

11 Rapid distortion theory

297

11.1 Irrotational mean flow

298

11.1.1 Cauchy form of vorticity equation

298

11.1.2 Distortion of a Fourier mode

301

11.1.3 Calculation of covariances

303

11.2 General homogeneous distortions

307

11.2.1 Homogeneous shear

309

11.2.2 Turbulence near a wall

312

Exercises

316

Part IV TURBULENCE SIMULATION

319

12 Eddy-resolving simulation

321

12.1 Direct numerical simulation

322

12.1.1 Grid requirements

322

12.1.2 Numerical dissipation

324

12.1.3 Energy-conserving schemes

326

12.2 Illustrations

329

12.3 Pseudo-spectral method

334

Exercises

338

13 Simulation of large eddies

341

13.1 Large eddy simulation

341

13.1.1 Filtering

342

13.1.2 Subgrid models

346

13.2 Detached eddy simulation

355

Exercises

359

References

361

Index

369