Composite Materials - Properties as Influenced by Phase Geometry

von: Lauge Fuglsang Nielsen

Springer-Verlag, 2005

ISBN: 9783540276807 , 264 Seiten

Format: PDF, OL

Kopierschutz: Wasserzeichen

Windows PC,Mac OSX geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Online-Lesen für: Windows PC,Mac OSX,Linux

Preis: 96,29 EUR

Mehr zum Inhalt

Composite Materials - Properties as Influenced by Phase Geometry


 

Overview

6

Readers Guidance

7

Contents

9

1 Introduction

14

1.1 Objectives of This Work

17

1.1.1 Summary of Composites Considered

18

2 Classification of Composites

19

2.1 Volume Concentrations

19

2.2 Geometry at Fixed Phase Concentrations

20

2.2.1 Geometrical Classification

21

2.3 Composites with Variable Geometry

22

2.3.1 Geometrical Classification

22

2.3.2 Some Composite Examples

26

3 Preliminaries on Stress/Strain

29

3.1 Stiffness

29

3.1.1 Dilute Suspension

31

3.2 Stress

32

3.3 Composite Sti.ness Estimated by SCS

32

4 Composite Stress and Geometry

35

4.1 Volumetric Stress

35

4.1.1 CSA-Composites

35

4.1.2 Any Composite – Geometry Function

36

4.1.3 Geometry Function and Shape Function

37

4.1.4 Shape Functions – A Closer Look

39

4.1.5 Summary

42

4.2 Deviatoric Stress

43

4.2.1 Stress and Geometry

43

4.3 Summary on Stress and Geometry

44

4.3.1 Stress

44

4.3.2 Geo-Function

44

5 Composite Stiffness and Geometry

46

5.1 Bulk Modulus and Shear Modulus

46

5.1.1 Porous Materials and Stiff Pore Systems

46

5.2 Young’s Modulus and Poisson’s Ratio

47

5.3 Special Composites and Observations

47

5.3.1 CSA-Composites

48

5.3.2 Composites with Special Shear Moduli Geo-Independent Bulk Moduli

48

5.3.3 Paul/Hansen versus Geo-Functions

49

6 Composite Eigenstrain/Stress

50

6.1 Basics

50

6.1.1 Simple Composites

51

6.2 General Geometry

51

6.2.1 Eigenstrain and Eigenstress

51

6.2.2 Pore Pressure in Porous Materials

52

7 Quantification of Geometry

53

7.1 Shape Factors

57

7.1.1 DC-Composites

57

7.1.2 CD-Composites

63

7.1.3 MM-Composites

64

7.2 Shape Functions and Geo-Path

67

7.2.1 Default

67

7.2.2 Alternative I

70

7.2.3 Alternative II

71

7.3 Geo-Paths

72

8 Composite Theory – Elasticity

74

8.1 Illustrative Examples

74

8.1.1 DC-CD Composite

74

8.1.2 Crumbled Foils Composite

76

8.1.3 Particulate (DC-DC) Composite

78

8.2 Other Examples

80

8.2.1 Cracks

80

8.2.2 Special DC-CD Composites Isotropy

84

8.3 FEM-Analysis versus Theory

87

8.3.1 FEM-Analysis

87

8.3.2 Particulate Composite

89

8.3.3 Defective Particulate Composite

91

8.3.4 Pearls on a String Composite

96

8.3.5 Grid Composite

100

8.3.6 Cracked Material

103

8.3.7 Discussion of FEM-Analysis

104

8.4 Conclusion

107

9 Composite Theory – Conductivity

108

9.1 Theory

108

9.2 Illustrative Examples

109

9.2.1 Porous Materials and Stiff Pore Systems

109

9.2.2 Dilute Porous Materials and Stiff Pore Systems

111

9.2.3 Cracked Materials (Soft and Stiff Cracks)

111

9.2.4 Crumbled Foils Composite

113

9.3 Theory versus Experiments

113

9.3.1 Chloride Diffusion in HCP and HCP with Silica Fume

113

9.3.2 Thermal Conductivity of Plane-Isotropic Fiber Composite

116

9.4 Theory versus SCS-Estimates

118

9.5 Conclusion

118

10 Simplified Composite Theory – Elasticity

121

10.1 Basis of Analysis

123

10.1.1 Geometry

123

10.1.2 Quantification of Composite Geometry

125

10.1.3 Preparation of Composite Analysis

129

10.2 Analysis

130

10.2.1 Bounds and Other Accurate Stiffness Expressions

131

10.2.2 Test of Theory

131

10.3 Illustrative Examples

133

10.3.1 Composites with Spherical Particles (CSAP)

134

10.3.2 Nearly CSAP Composites

134

10.3.3 Phase Symmetric Composites

135

10.3.4 Eigenstrain/Stress versus Geometry

140

10.3.5 Porous Materials

140

10.4 Theory and Experiments

145

10.4.1 Some Irregular Geometries Non-Flexible Geometry – Interference

145

10.4.2 Various Porous Materials

148

10.4.3 Sulphur Impregnated Cement/Silicate System

152

10.4.4 Salt Infected Bricks

154

10.4.5 Non-Flexible Particles in Particulate Composite

155

10.4.6 Defective Phase Contact in Concrete

157

10.4.7 Hydrating Cement Paste and Concrete

159

10.5 Conclusion

162

11 Simplified Composite Theory – Conductivity

163

11.1 Illustrative Example

163

11.1.1 On the Accuracy of Simplification

164

11.2 Applications

164

11.2.1 Thermal Conductivity of Fire-Brick

164

11.2.2 Electrical Conductivity of Binary Metallic Mixtures

164

11.2.3 Chloride Di.usion in Cement Paste System

166

11.3 Conclusion

169

12 Diagnostic Aspects of Theory

170

12.1 Stiffness

172

12.1.1 Examination of Sti.ness Expressions Isotropy Check

172

12.2 Conductivity

178

12.2.1 Examination of SCS-Expressions Spheres: Böttcher/ Landauer

178

12.3 Discussion

181

13 Aspects of Materials Design

184

13.1 Geometries versus Properties

184

13.2 Design

185

13.3 Illustrative Examples

185

13.3.1 Stiffness

185

13.3.2 Conductivity

187

13.4 Discussion

189

14 Viscoelasticity

190

14.1 Stress-Strain Relations

191

14.1.1 Analogy Young’s Modulus

192

14.1.2 Vibrations

194

14.2 Models of Viscoelastic Materials

196

14.2.1 Simple Models

197

14.2.2 Less Simple Models

197

14.3 Summary, Analysis, and Approximate Analysis

202

14.3.1 Approximate Analysis

203

15 Viscoelastic Composites

206

15.1 Composite Analysis

207

15.1.1 Accurate Analysis

207

15.1.2 Approximate Analysis

207

15.2 Applications

209

15.2.1 Porous Materials and Stiff Pore Systems

210

15.2.2 Particulate Composite

210

15.2.3 Mature Cement Concrete

211

15.2.4 Young Concrete

217

15.2.5 In.uence of Geometry on Viscoelastic Composite Behavior Particulate Composite versus Grid Reinforced Composite

217

15.2.6 Monomer Impregnated HCP and Porous Glass

222

15.2.7 Damping of Wood

225

15.3 Discussion

227

16 Final Remarks

228

A Elasticity

230

A.1 Isotropy

230

A.1.1 Composite Aspects

230

A.1.2 Stress-Strain

230

A.2 Cubic Elasticity

231

A.2.1 Poly-Cubic Elasticity

232

A.2.2 Composite Aspects

233

B Dilute Particulate Composites

234

B.1 Cubic Stiffness, Shape Parameters, and Stress

234

B.1.1 Particle Stress

235

B.1.2 Isotropic Stiffness, Shape Coefficients, and Stress

237

B.1.3 Particle Stress

237

C SCS-Analysis

238

C.1 Stiffness

238

C.1.1 Spherical Particles

239

C.1.2 Various Particle Shapes and Cracks

240

C.1.3 Multi-Shaped Particles

241

C.2 Other Physical Properties

242

C.2.1 Spherical Particles

243

C.2.2 Particles of Various Shapes and Cracks

243

C.2.3 Multi-Shaped Particles

245

D General Viscoelastic Models

246

E HCP and Concrete

248

E.1 Volume Models

248

E.2 Porosity of Hardening Cement Paste

249

Notations

251

References

254