Minimizing Incisions and Maximizing Outcomes in Cataract Surgery

von: Jorge Alió, Howard Fine I

Springer-Verlag, 2010

ISBN: 9783642028625 , 319 Seiten

Format: PDF

Kopierschutz: Wasserzeichen

Windows PC,Mac OSX geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's

Preis: 96,29 EUR

Mehr zum Inhalt

Minimizing Incisions and Maximizing Outcomes in Cataract Surgery


 

Preface

6

Contents

8

Contributors

11

Chapter 1

14

Introduction

14

Literature Review

14

Major Issues

14

Major Studies

14

Negative Studies

16

References

16

Chapter 2

18

The Transition Towards Smaller and Smaller Incisions

18

1.1 Micro-Coaxial Phacoemulsifi cation with Torsional Ultrasound

18

1.1.1 Introduction

18

1.1.2 Micro-Coaxial Phacoemulsification

18

1.1.3 Torsional Ultrasound

19

1.1.4 Our Procedure for Emulsifying the Nucleus

21

1.1.5 Combining Micro-Coaxial Phacoemulsification with Torsional Ultrasound

22

References

23

Chapter 3

24

1.2 Transitioning to Bimanual MICS

24

1.2.1 Introduction

24

1.2.2 Technique

25

1.2.3 Summary

26

Chapter 4

27

1.3 0.7 mm Microincision Cataract Surgery

27

1.3.1 Sub 1 mm MICS: Why?

27

1.3.2 Potential Drawbacks of a Sub-1 m Incision

28

1.3.3 Instrumentation

30

1.3.3.1 Phaco Tip (0.7 mm)

30

1.3.3.2 0.7 mm Irrigating Instruments

31

1.3.4 Surgery

32

1.3.4.1 Incision

32

1.3.4.2 Capsulorhexis

32

1.3.4.3 Hydrodissection

32

1.3.4.4 Prechopping

32

1.3.4.5 Phacoemulsification

33

1.3.5 0.7 mm MICS Combined Procedures

34

1.3.5.1 0.7 mm MICS and Glaucoma Surgery

34

1.3.5.2 0.7 mm MICS and 25-GaugeTransconjunctival SuturelessVitrectomy

35

1.3.6 Summary

36

References

36

Chapter 5

38

MICS Instrumentation

38

2.1 MICS Instrument Choice: The First Step in the Transition

38

2.2 MICS Incision

40

2.3 MICS Capsulorhexis

41

2.4 MICS Prechopping

43

2.5 MICS Irrigation/Aspiration Instruments

44

2.5.1 19 G Instruments

44

2.5.2 21 G Instruments

46

2.6 MICS Auxiliary Instrument

47

2.6.1 Scissors

47

2.6.2 Gas Forced Infusion

47

2.6.3 Surge Prevention

48

2.7 New MICS Instruments

48

2.7.1 Flat Instruments

48

References

49

Chapter 6

50

Evolution of Ultrasound Pumps and Fluidics and Ultrasound Power: From Standard Coaxial Towards the Minimal Incision Possible in Cataract Surgery

50

3.1 Introduction

50

3.2 Power Generation

50

3.3.1 Tuning

50

3.2.2 Phaco Energy

51

3.2.2.1 Low Frequency Energy

51

3.2.2.2 High Frequency Energy

51

3.2.3 Transient Cavitation

51

3.2.4 Sustained Cavitation

52

3.3 Modifi cation of Phaco Power

53

3.3.1 Alteration of Stroke Length

53

3.3.2 Alteration of Duration

53

3.3.2.1 Burst Mode

53

3.3.2.2 Pulse Mode

53

Micro Pulse (Hyper-Pulse)

53

Pulse Shaping

54

3.3.3 Alteration of Emission

54

3.4 Fluidics

55

3.5 Vacuum Sources

56

3.6 Surge

57

3.6.1 Non-Longitudinal Phaco: Modification of Fluid Control by Power Modulations

58

3.6.2 Partial-Occlusion Phacoemulsification

59

3.7 Phacoemulsifi cation Technique and Machine Technology

60

3.7.1 Micro-incisional Phaco

60

3.7.2 Bimanual Micro-Incisional Phaco

60

3.7.3 Micro-Incisional Coaxial Phaco

60

3.7.3.1 Irrigation and Aspiration

61

3.8 Conclusion

61

Reference

61

Further Reading

62

Chapter 7

63

Coaxial Microincision Cataract Surgery Utilizing Non-Linear Ultrasonic Power: An Alternative to Bimanual Microincision Cataract Surgery

63

4.1 Introduction

63

4.2 The Fluidics of Coaxial Microincisional Phacoemulsification

64

4.3 Incision Size

66

4.4 Torsional Ultrasound

67

4.5 Conclusion

68

References

68

Chapter 8

69

Technology Available

69

5.1 How to Better Use Fluidics with MICS

69

5.1.1 Physical Considerations

69

5.1.1.1 Aspiration Effi ciency

69

5.1.1.2 Chamber Stability

70

5.1.1.3 Holdability

71

5.1.2 Surgical Considerations

74

5.1.2.1 Incision Configuration

74

5.1.2.2 Phaco Technique

75

5.1.2.3 Infusion-Assisted High-Flow High-Vacuum Phacoaspiration (Hybrid Phaco)

77

5.1.2.4 The OS3 and CataRhex SwissTech Platforms

78

Equipment

78

Machine Settings

79

References

80

Chapter 9

81

5.2 How to Use Power Modulation in MICS

81

5.2.1 Introduction

81

5.2.2 What Do Phacoemulsifi cation Machines Really Do?

81

5.2.3 The Concept of Unoccluded Flow Vacuum

81

5.2.4 The Intricacies of Ultrasound Power Modulation

82

5.2.5 The Variable Incidence of Wound Burn Rates

83

5.2.6 Measuring the Amplitude of Post-Occlusion Surge

84

References

86

Chapter 10

87

5.3 MICS with Different Platforms

87

5.3.1 MICS with the Accurus Surgical System

87

5.3.1.1 Introduction and Historic Background

87

5.3.1.2 Surgical Features of the Accurus Surgical System Useful for MICS Procedures

89

5.3.1.3 Surgical Parameters for MICS with Accurus

92

5.3.1.4 Final Considerations

94

References

95

Chapter 11

96

5.3.2 Using the Alcon Infi niti and AMO Signature for MICS

96

5.3.2.1 Introduction

96

5.3.2.2 Technology on the Alcon Infi niti

96

5.3.2.3 Setting Up the Infi niti for MICS

96

5.3.2.4 Importance of Tip Size on Machine Fluidics Settings with the Infiniti

96

5.3.2.5 Setting the Ultrasound Power and Modulation with the Infiniti for MICS

98

5.3.2.6 The Infiniti and BMICS

98

5.3.2.7 Technology for MICS on the AMO Signature

99

5.3.2.8 Applying Signature Technology to CMICS and BMICS

100

Chapter 12

101

5.3.3 MICS with Different Platforms: Stellaris Vision Enhancement System

101

5.3.3.1 Innovations in Phacoemulsifi cation

101

5.3.3.2 Evaluating the Stellaris Vision Enhancement System

103

5.3.3.3 The Advantages of BMICS

104

References

105

Chapter 13

107

Surgical Technique – How to Perform a Smooth Transition

107

References

111

Chapter 14

111

6.1 Pupil Dilation and Preoperative Preparation

111

6.1.1 Managing the Small Pupil

111

6.1.2 Techniques that Depend on the Manipulation of the Pupil

112

6.1.3 Iris Surgery

113

6.1.4 Preoperative Preparation and Infection Prophylaxis

115

6.1.5 Evaluating Risk

115

6.1.6 Assessing Your Approach

116

6.1.7 Preventing Infection, Step by Step

117

6.1.8 Sample Protocol Outline

118

6.1.9 A Careful, Critical Eye

119

References

119

Chapter 15

120

6.2 Incisions1

120

6.2.1 Side-Port Incisions

125

References

128

Chapter 16

129

6.3 Thermodynamics1

129

6.3.1 Introduction

129

6.3.2 Corneal Thermal Damage

129

6.3.3 Heat Generation

130

6.3.4 Factors that Contribute to Thermal Incision Damage

130

6.3.4.1 Energy Emission: Amount and Pattern of How the Energy Is Delivered

130

6.3.4.2 Incision: Incision Construction and Possible Constriction of the Sleeve

132

6.3.4.3 Viscoelastic Devices and Possible Occlusion of the Aspiration Line

133

6.3.4.4 Irrigation Flow

133

6.3.4.5 Position of the Tip Inside the Incision

133

6.3.4.6 Tip Design

133

6.3.4.7 Surgical Technique

134

6.3.5 Conclusion

134

References

135

Chapter 17

136

6.4 Using Ophthalmic Viscosurgical Devices with Smaller Incisions

136

6.4.1 Introduction

136

6.4.1.1 The Nature of OVDs: Rheology

137

6.4.1.2 The Classifi cation of OVDs

137

6.4.1.3 Soft Shell and Ultimate Soft Shell Technique (SST & USST)

138

6.4.2 Routine, Special and complicated Cases

138

6.4.2.1 Phakic and Anterior Chamber IOLs

140

6.4.2.2 Trabeculectomy and Phaotrabeculectomy

141

6.4.2.3 Fuchs’ Endothelial Dystrophy

141

6.4.2.4 Zonular Defi ciency

141

6.4.2.5 Capsular Staining for White & Black Cataracts

141

6.4.2.6 Flomax® Intraoperative Floppy Iris Syndrome USST

142

6.4.3 Discussion

143

References

144

Chapter 18

145

6.5 Capsulorhexis

145

References

147

Chapter 19

148

6.6 Hydrodissection and Hydrodelineation1

148

References

152

Chapter 20

153

6.7 Biaxial Microincision Cataract Surgery: Techniques and Sample Surgical Parameters

153

Chapter 21

157

6.8 Biaxial Microincision Phacoemulsification: Transition, Techniques, and Advantages

157

6.8.1 Surgical Technique

157

6.8.2 Advantages

159

6.8.3 Disadvantages

160

6.8.4 Final Thoughts

161

References

161

Chapter 22

162

6.9 BiMICS vs. CoMICS: Our Actual Technique (Bimanual Micro Cataract Surgery vs. Coaxial Micro Cataract Surgery)

162

6.9.1 Introduction

162

6.9.2 Historical Background

163

6.9.3 BiMICS. BiManual MicroIncision Cataract Surgery

163

6.9.3.1 Introduction

163

6.9.3.2 Instrumentation

163

6.9.3.3 Microphacodynamics

163

6.9.3.4 Irrigation-aspiration

164

6.9.3.5 Phacotips

165

6.9.3.6 Capsulorhexis

165

6.9.3.7 Phaco Knives

165

6.9.3.8 The Phaco Machines

165

6.9.3.9 Phaco Pumps

165

6.9.3.10 Ultrasound Power Delivery

165

6.9.3.11 IOL Implantation

165

6.9.3.12 Astigmatism

165

6.9.4 CoMICS: Coaxial MicroIncision Cataract Surgery

166

6.9.4.1 Capsulorhexis

166

6.9.4.2 Phacotips

166

6.9.4.3 The Phaco Machines

167

6.9.4.4 Phaco Pumps

167

6.9.4.5 Ultrasound Power Delivery

167

6.9.4.6 Irrigation-Aspiration

167

6.9.4.7 Incision-Assisted IOL Implantation

167

6.9.5 Conclusion

167

References

168

Chapter 23

169

6.10 Endophthalmitis Prevention

169

6.10.1 Antibiotic Prophylaxis

169

6.10.2 Wound Construction

172

6.10.3 Summary

173

References

173

Chapter 24

176

Biaxial Microincision Phacoemulsifi cation for Diffi cult and Challenging Cases

176

7.1 High Myopia

176

7.2 Posterior Polar Cataract

176

7.3 Posterior Subluxed Cataracts

177

7.4 Mature Cataract with Zonular Dialysis

177

7.5 Punctured Posterior Capsule

178

7.6 Posterior Capsule Rupture

178

7.7 Pseudoexfoliation

179

7.8 Rock-Hard Nuclei

179

7.9 Switching Hands

180

7.10 Microcornea or Microphthalmos

180

7.11 Large Iridodialysis and Zonular Defects

180

7.12 Intraoperative Floppy Iris Syndrome (IFIS)

181

7.13 Every Small Pupil Must Be Viewed as a Potential IFIS

183

7.14 Iris Bombé

184

7.15 Very Shallow Anterior Chambers

184

7.16 Refractive Lens Exchange

184

7.17 Refractive Lens Exchange in Post Radial Keratotomy (RK)

185

7.18 Intraocular Cautery

186

7.19 Biaxial Microincision Instruments

186

References

187

Chapter 25

188

7.1 MICS in Special Cases: Incomplete Capsulorhexis

188

7.1.1 Introduction

188

7.1.2 Avoiding Complications While Constructing Your Microcapsulorhexis

189

7.1.3 Avoiding Complications During Biaxial Phaco with an Incomplete Capsulorhexis

192

7.1.4 Avoiding Complications During IOL Insertion with an Incomplete Capsulorhexis

198

7.1.5 Conclusions

198

References

199

Chapter 26

200

7.2 MICS in Special Cases (on CD): Vitreous Loss

200

7.2.1 Introduction

200

7.2.2 Posterior Capsule Tears and Vitreous Prolapse

201

7.2.3 Vitreous and the Epinucleus or Cortex

204

7.2.4 Different Techniques Other than Pars Plana Vitrectomy for Nuclear Loss in Vitreous

205

7.2.5 Pars Plana Vitrectomy

205

7.2.6 Zonulolysis

205

References

206

Chapter 27

208

7.3 How to Deal with Very Hard and Intumescent Cataracts

208

7.3.1 Introduction

208

7.3.2 Types of Cataracts

209

7.3.3 Management of Hard Cataracts Through Biaxial Technique

209

7.3.4 Incision

209

7.3.5 Capsulorrhexis

211

7.3.6 Hydrodissection

213

7.3.7 Phacoemulsifi cation

214

7.3.8 Conclusion

218

References

220

Chapter 28

221

IOL Types and Implantation Techniques

221

8.1 MICS Intraocular Lenses

221

8.1.1 Introduction

221

8.1.2 Lenses

222

8.1.2.1 Zeiss – Acri.Tec MICS IOLs (Zeiss – Acri.Tec Berlin, Germany)

222

8.1.2.2 ThinOptX MICS IOLs (ThinOptX, Abingdon, VA)

224

8.1.2.3 Akreos MI60 AO Micro Incision IOL (Bausch & Lomb, Rochester, NY)

225

8.1.2.4 IOLtech MICS lens (IOLtech, La Rochelle, France; and Carl Zeiss Meditec, Stuttgard, Germany)

226

8.1.2.5 TetraFlex KH-3500 and ZR-1000 (Lenstec, St. Petersburg, FL)

226

8.1.2.6 MicroSlim and SlimFlex MICS IOLs (PhysIOL, Liège, Belgium)

226

8.1.2.7 CareFlex IOL (W20 Medizintechnik AG, Bruchal, Germany)

227

8.1.2.8 AcriFlex MICS 46CSE IOL (Acrimed GmbH, Berlin, Germany)

227

8.1.2.9 Hoya Y-60H (Hoya Corporation, Tokyo, Yapan)

227

8.1.2.10 Miniflex IOL (Mediphacos Ltda., Minas Gerais, Brasil)

228

8.1.3 Optical Quality of MICS IOLs

228

8.1.4 Conclusion

229

References

231

Chapter 29

232

8.2 Implantation Techniques

232

8.2.1 Defi nition

233

8.2.2 Prerequisites to a Sub-2 Injection

233

8.2.3 IOLs Used for Injection Through Microincision

233

8.2.3.1 Material

234

8.2.3.2 Design

234

8.2.3.3 Optic Design

235

8.2.3.4 Haptic Design

235

8.2.3.5 Posterior Barrier (360°)

235

8.2.4 Injectors Meant for Microincision

235

8.2.4.1 Objectives of Injectors Meant for Microincision

236

8.2.4.2 Characteristics of Sub-2 Injectors

237

8.2.4.3 The Cartridges

238

Loading Chambers

238

Injection Tunnels and Cartridge Tips

238

8.2.4.4 The Plunger Tips (or plunger)

239

8.2.4.5 Pushing Systems

239

8.2.4.6 Injector Bodies

239

8.2.4.7 Principal Sub-2 Injectors

240

8.2.5 Visco Elastic Substances and Injection Through Microincision

241

8.2.6 Techniques of Sub-2 Injection

242

8.2.6.1 Visco-Injection Using Wound-Assisted Technique

243

8.2.6.2 Incision Construction

243

8.2.6.3 Pressurization of the Anterior Chamber

243

8.2.6.4 Loading the Cartridge

243

8.2.6.5 Loading the Injector

244

8.2.6.6 Insertion of the Plunger Tip

244

8.2.6.7 Injection in the Anterior Chamber

244

8.2.6.8 Positioning the IOL in the Capsular Bag

245

8.2.6.9 Removing the VES

245

8.2.6.10 Thin Roller Injector

245

8.2.6.11 Conclusion

245

Reference

247

Chapter 30

247

8.3 Special Lenses

247

8.3.1 Toric Posterior Chamber Intraocular Lenses in Cataract Surgery and Refractive Lens Exchange

247

8.3.1.1 Introduction

247

8.3.1.2 Definitions

248

8.3.1.3 T-IOL Calculation

249

8.3.1.4 Current T-IOL Models

249

8.3.1.5 Preoperative Marking

250

8.3.1.6 Clinical Indications

250

8.3.1.7 Custom-Made Lenses

251

8.3.1.8 Conclusion for Practice

253

References

255

Chapter 31

256

8.3.2 Special Lenses: MF

256

8.3.2.1 Discussion

257

8.3.2.2 Conclusion

257

8.3.2.3 Outlook

259

References

260

Chapter 32

261

8.3.3 Special Lenses: Aspheric

261

References

267

Chapter 33

269

8.3.4 Intraocular Lenses to Restore and Preserve Vision Following Cataract Surgery

269

8.3.4.1 Introduction

269

8.3.4.2 Why Filter Blue Light?

269

Summary

270

8.3.4.3 Importance of Blue Light to Cataract and Refractive Lens Exchange Patients

270

Summary

271

8.3.4.4 Quality of Vision with Blue Light Filtering IOLs

271

Summary

272

8.3.4.5 Clinical Experience

272

Summary

273

8.3.4.6 Unresolved Issues and Future Considerations

273

References

273

Chapter 34

275

8.3.5 Microincision Intraocular Lenses: Others

275

8.3.5.1 ThinOptX®

276

8.3.5.2 Smart IOL

277

8.3.5.3 Afi nity™

277

8.3.5.4 AcriTec

278

8.3.5.5 Akreos

281

8.3.5.6 Tetraflex

282

8.3.5.7 Rayner

283

8.3.5.8 Injectable Polymers

285

8.3.5.9 Final Comments

287

References

288

Chapter 35

289

Outcomes

289

9.1 Safety: MICS versus Coaxial Phaco

289

9.1.1 Introduction

289

9.1.2 Visual Outcomes

290

9.1.3 Incision Damage

290

9.1.4 Corneal Incision Burn

291

9.1.5 Corneal Changes

292

9.1.6 Infection

295

9.1.7 Summary

296

References

296

Chapter 36

298

9.2 Control of Corneal Astigmatism and Aberrations

298

9.2.1 Introduction: Impacts of MICS Incision on the Outcomes of Cataract Surgery

298

9.2.2 Objective Evaluation of Corneal Incision

298

9.2.3 Control of Corneal Aberration and Astigmatism with MICS

298

9.2.4 Role of Corneal Aberrometry in Evaluating MICS Incision

299

9.2.5 Role of OCT in Evaluating MICS Incision

299

9.2.6 Our Experience in Corneal Aberrations and Astigmatism After MICS

299

9.2.7 Conclusion

301

References

303

Chapter 37

304

9.3 Corneal Endothelium and Other Safety Issues

304

References

307

Chapter 38

309

9.4 Incision Quality in MICS

309

9.4.1 Introduction: History of Incision Size Reduction

309

9.4.2 The Trends Towards Microincision Cataract Surgery (BMICS)

309

9.4.3 Advantages of Minimizing the Incision Size

309

9.4.4 Model for the Analysis of Corneal Incision Quality [21]

310

9.4.5 Our Protocol for Evaluation of Incision Quality in BMICS [21]

311

9.4.6 Results

316

9.4.6.1 Visual, Refractive and Biomicroscopic Outcomes

316

9.4.6.2 Incision Imaging (OCT) Outcomes

316

9.4.6.3 Topographic and Aberrometric Outcomes

318

9.4.7 Special Focus on the Role of OCT in the Evaluation of Incision Quality in BMICS

322

9.4.8 Conclusion

323

References

324

Index

325