Nanomedicine in Brain Diseases - Principles and Application

Nanomedicine in Brain Diseases - Principles and Application

von: Xue

Springer-Verlag, 2019

ISBN: 9789811387319 , 321 Seiten

Format: PDF, OL

Kopierschutz: Wasserzeichen

Windows PC,Mac OSX geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Online-Lesen für: Windows PC,Mac OSX,Linux

Preis: 96,29 EUR

Mehr zum Inhalt

Nanomedicine in Brain Diseases - Principles and Application


 

Preface

5

Acknowledgments

6

Contents

7

Chapter 1: Introduction: Nanomedicine in the Brain

13

1.1 Introduction

13

1.2 Application of Nanomedicine

15

1.2.1 Magnetic-Based Nanomaterials

17

1.2.2 Carbon-Based Nanomaterials

17

1.2.3 Silicon-Based Nanomaterials

18

1.2.4 Lipid-Based Nanomaterials

19

1.2.5 Rare-Earth Elements-Based Nanomaterials

19

1.2.6 Quantum Dots

20

1.2.7 Metallic Organic Framework Compounds

20

1.2.8 Others

21

1.3 Overview of Neuropsychiatric Disease

22

1.3.1 Neurological Disease

23

1.3.1.1 AD

23

1.3.1.2 PD

24

1.3.1.3 Stroke

26

1.3.1.4 MS

28

1.3.1.5 Glioblastoma

28

1.3.2 Psychiatric Disease

29

1.3.2.1 Depression

30

1.3.2.2 Schizophrenia

30

1.3.2.3 Other Psychiatric Disease

31

1.4 Conclusion and Perspective

31

References

33

Chapter 2: The Strategies of Nanomaterials for Traversing Blood-Brain Barrier

41

2.1 Introduction

42

2.2 BBB Structure and Passage Mechanism

43

2.3 Different Strategies for Targeting of Drugs to the Brain

46

2.4 Convection-Enhanced Delivery (CED)

46

2.5 Intranasal Delivery to Bypass BBB

47

2.6 Employment of NPs for Drug Delivery into the Brain

48

2.7 Aspects Affecting the Entry of NPs over the BBB

49

2.8 Different Types of Nanoparticles Employed to Cross BBB

51

2.8.1 Liposomes

51

2.8.2 Lipid-Based NPs

53

2.8.3 Polymer-Based Nanocarriers Across the BBB

53

2.9 Employment of Different siRNA-Based Deliveries

55

2.9.1 Exosome-Based Delivery

56

2.9.2 Employment of Cell-Penetrating Peptides (CPPs)

57

2.9.3 Other Types of NPs

57

2.10 Mechanism of Nanoparticle Route to BBB

59

2.11 Neurotoxicity of the Nanoparticles

61

2.12 A Future Point of View

62

2.13 Conclusion

62

References

63

Chapter 3: The Strategies of Nanomaterials for Drug Delivery and Release

70

3.1 Introduction

70

3.2 Nanopreparations for Brain Diseases

72

3.2.1 Construction of Nanocarriers

72

3.2.2 Types of Nanopreparations for Brain Disease

73

3.2.2.1 Nanoparticles

74

3.2.2.2 Dendrimer

75

3.2.2.3 Micelle

75

3.2.2.4 Liposome

76

3.2.2.5 Others

76

3.3 Advances in Drug Delivery and Release Approaches for Brain Diseases

77

3.3.1 Controlled Nano Drug Delivery Systems

77

3.3.2 Targeted Nano Drug Delivery Systems

77

3.3.2.1 Passive Targeting

77

3.3.2.2 Active Targeting

78

3.3.2.2.1 Receptors-Related Endocytosis

79

3.3.2.2.2 Transporters-Mediated Active Targeting

80

3.3.2.2.3 Cell-Penetrating Peptides-Mediated Active Targeting

81

3.3.2.2.4 Adsorptive-Mediated Active Targeting

81

3.3.2.3 Magnetic Targeting

81

3.3.2.4 Dual Targeting

82

3.3.3 Smart Response Nano Drug Delivery and Release Systems

83

3.3.3.1 PH-Sensitive Nanopreparations

84

3.3.3.2 ROS-Sensitive Nanopreparations

84

3.3.3.3 Temperature-Sensitive Nanopreparations

85

3.3.3.4 Others

86

3.3.4 Intranasal Drug Delivery Systems

86

3.4 Conclusion

87

References

87

Chapter 4: The Strategies of Nanomaterials for Therapy

94

4.1 Introduction

94

4.2 Nanomaterials for Brain Tumor Treatment

95

4.2.1 Nanomaterial-Based Chemotherapy

95

4.2.2 Nanomaterial-Based Gene Therapy

96

4.2.3 Nanomaterial-Based Thermotherapy

98

4.2.4 Nanomaterial-Based Photodynamic Therapy

99

4.2.5 Nanomaterial-Based Immunotherapy

100

4.3 Nanomaterials for Alzheimer´s Disease Treatment

100

4.3.1 Nanomaterials for Drug Delivery

101

4.3.1.1 Cholinesterase Inhibitors and Acetylcholine Nanocarriers

101

4.3.1.2 Hormone Nanocarrier

102

4.3.1.3 Curcuminoids Nanocarrier

102

4.3.1.4 Polyphenol Nanocarrier

102

4.3.2 Nanomaterial-Based Metal Chelation Strategy

102

4.3.2.1 Iron Chelators

103

4.3.2.2 Copper Chelators

103

4.3.2.3 Zinc Chelators

103

4.3.3 Nanomaterials for Antioxidant

104

4.3.3.1 Fullerenes

104

4.3.3.2 Nanoceria

104

4.3.4 Nanomaterial-Based Gene Therapy

105

4.3.5 Nanomaterial-Based Immunotherapy

106

4.4 Nanomaterials for Parkinson´s Disease Treatment

107

4.4.1 Nanomaterials for Dopamine Replacement

108

4.4.2 Nanomaterials for Dopaminergic Agonist Delivery

108

4.4.3 Nanomaterials for Growth Factor and Peptides Delivery

110

4.4.3.1 Growth Factor

110

4.4.3.2 Peptides

111

4.4.4 Nanomaterial-Based Gene Therapy

111

4.5 Nanomaterials for Stroke Treatment

112

4.5.1 Nanomaterials for Thrombolysis

113

4.5.1.1 Tissue Plasminogen Activator (tPA) Delivery

113

4.5.1.2 Heparin Delivery

114

4.5.2 Nanomaterials for Neuroprotection

114

4.5.2.1 Antioxidant and Anti-inflammatory Agents Delivery

114

4.5.2.2 Antioxidant Enzymes Delivery

114

4.5.2.3 Nanomaterial-Based Stem Cell Therapy

116

4.5.3 Nanomaterial-Based Gene Therapy

116

4.6 Conclusion

117

References

117

Chapter 5: Overcoming the Physiopathologic Barriers: Nanoprobes-Mediated Intracranial Glioma Imaging

126

5.1 Introduction

127

5.2 Critical Biological Challenges Facing Intracranial Glioma

128

5.3 Strategies for Bypassing and Crossing BBB

129

5.4 Advantages of Nanomaterials for Glioma Imaging

130

5.5 Applications of Nanoprobes for Intracranial Glioma Imaging

131

5.5.1 Magnetic Resonance Imaging

132

5.5.2 Photoacoustic Imaging

136

5.5.3 Fluorescence Imaging

138

5.5.4 Multimodal Imaging

140

5.5.5 Intraoperative Glioma Margin Delineation

143

5.6 Challenges and Perspectives

145

References

146

Chapter 6: The Advances of Nanozyme in Brain Disease

150

6.1 Introduction

150

6.2 ROS-Mediated Oxidative Stress and Its Role in Neurological Diseases

152

6.3 Nanozymes with Antioxidant Activity

155

6.3.1 Nanozymes with SOD-Like Activity

156

6.3.1.1 Nanoceria with SOD-Like Activity

156

6.3.1.2 Fullerene and Its Derivatives with SOD-Like Activity

158

6.3.1.3 Carbon Clusters with SOD-Like Activity

159

6.3.1.4 Platinum Nanoparticles with SOD-Like Activity

161

6.3.2 Nanozymes with Catalase-Like Activity

161

6.3.2.1 Nanoceria with Catalase-Like Activity

162

6.3.2.2 Iron Oxide Nanoparticles with Catalase-Like Activity

164

6.3.2.3 Co3O4 Nanozymes with Catalase-Like Activity

165

6.3.2.4 Platinum Nanoparticles with Catalase-Like Activity

165

6.3.3 Nanozymes with Multiple Antioxidant Enzyme-Like Activities

166

6.3.3.1 Mn3O4 Nanozyme

167

6.4 Nanozymes Used for the Treatment of Neurological Diseases

169

6.4.1 Application of Nanozymes in Neuroprotection

169

6.4.2 Application of Nanozymes in Alzheimer´s Disease

174

6.4.3 Application of Nanozymes in Cerebral Ischemia

179

6.4.4 Application of Nanozymes in Parkinson´s Disease

181

6.4.5 Application of Nanozymes in Multiple Sclerosis

182

6.5 Challenges and Perspectives

182

References

184

Chapter 7: The Advances of Biomacromolecule-based Nanomedicine in Brain Disease

191

7.1 Introduction

191

7.2 Key Constraint Factors for Biomacromolecule Delivery into the Brain

192

7.2.1 Blood-Brain Barrier (BBB)

192

7.2.2 Blood Cerebrospinal Fluid Barrier (BCFB) and Blood Tumor Barrier (BTB)

193

7.2.3 Drug Diffusion in the Brain

193

7.3 Strategies for Biomacromolecular Nanomedicine Delivery into the Brain

194

7.3.1 Direct Injections

194

7.3.2 Convection-Enhanced Delivery (CED)

195

7.3.3 Intranasal Administration

195

7.3.4 Oral Administration

196

7.3.5 BBB Disruption

196

7.3.6 Ultrasound and Microbubble with Nanoparticles

197

7.3.7 Targeted Brain Delivery

197

7.4 Preclinical and Clinical Advances of Biomacromolecular Nanomedicines for Brain Disease Treatment

198

7.4.1 Protein-Based Nanomedicine

198

7.4.2 Enzyme-Based Nanomedicine

199

7.4.3 Peptide-Based Nanomedicine

202

7.4.4 Antibody-Based Nanomedicine

203

7.4.5 Nucleic Acid-Based Nanomedicine

206

7.4.5.1 Current Status of Nucleic Acid-Based Therapeutics

206

7.4.5.2 siRNA

207

7.4.5.3 ASO

208

7.4.5.4 DNA and mRNA

208

7.5 Concerns over Biomacromolecular Nanomedicines

209

7.6 Conclusion and Prospective

210

References

210

Chapter 8: Carbon-Based Nanomedicine

219

8.1 Introduction

219

8.2 Application

220

8.2.1 Drug Carrier

220

8.2.2 Gene Carrier

221

8.2.3 Photodynamic Therapy (PDT) and Photothermal Therapy (PTT)

223

8.2.4 Imaging Agent

224

8.3 Pharmacodynamics and Metabolism

227

8.3.1 Delivery to the Brain

227

8.3.2 Toxicological Characteristics

228

8.3.3 Drug Release

229

8.4 Diagnosis and Treatment

231

8.4.1 Neurodegenerative Disease

231

8.4.2 Tumor

231

8.4.3 Acute Hyperglycemia

233

8.5 Biodistribution of Carbon Nanomaterials

234

8.5.1 Brain Distribution

234

8.5.2 Body Distribution

236

8.6 Summary

238

References

238

Chapter 9: Polymeric Nanomedicine

242

9.1 Introduction: Polymeric Nanomedicine and Polymeric Nanoparticles

242

9.2 Various Polymeric Nanoparticles

244

9.2.1 Polymeric Micelles

244

9.2.2 Core-Shell Nanocarriers

246

9.2.3 Nanospheres

248

9.2.3.1 Chitosan

248

9.2.3.2 PLGA Nanoparticles

250

9.2.3.3 PBCA Nanoparticles

251

9.2.4 Nanocapsules

251

9.2.5 Dendrimers

252

9.2.6 Nanogels

254

9.3 The Application of Polymeric Nanomedicine in Brain Disease

255

9.3.1 Brain Cancers

255

9.3.2 Alzheimer´s Disease

259

9.3.3 Cerebral Amyloid Angiopathy (CAA)

264

9.3.4 Parkinson´s Disease (PD)

265

9.3.5 Stroke

268

9.3.6 Multiple Sclerosis

271

References

271

Chapter 10: Magnetic Nanomedicine

277

10.1 Nanomaterials

278

10.2 Magnetic Nanoparticles

279

10.3 Synthesis Method of MNPs

283

10.3.1 Ball Milling Method

284

10.3.2 Chemical Methods

286

10.3.3 Coprecipitation

286

10.3.4 Thermal Decomposition

287

10.3.5 Hydrothermal Synthesis

288

10.4 Magnetic Nanoparticles as Hyperthermia Agent

291

10.4.1 Parameters Affecting the Heating Efficiency

292

10.5 Magnetic Nanoparticles for Drug Delivery

297

10.5.1 Drug Delivery Mechanism

298

10.5.2 MNPs in Drug Delivery

300

10.6 Magnetic Resonance Imaging (MRI)

303

10.6.1 MRI Contract Agents

304

10.6.2 The Longitudinal Relaxation (T1) Agents

305

10.6.3 The Transverse Relaxation (T2) Agents

307

10.7 Conclusion and Prospective

308

References

310