Bones and Cartilage - Developmental Skeletal Biology

Bones and Cartilage - Developmental Skeletal Biology

von: Brian K. Hall

Elsevier Trade Monographs, 2005

ISBN: 9780080454153 , 792 Seiten

Format: PDF, ePUB, OL

Kopierschutz: DRM

Windows PC,Mac OSX geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Apple iPod touch, iPhone und Android Smartphones Online-Lesen für: Windows PC,Mac OSX,Linux

Preis: 103,00 EUR

Mehr zum Inhalt

Bones and Cartilage - Developmental Skeletal Biology


 

Bones and Cartilage: Developmental and Evolutionary Skeletal Biology

2

Epigraph

3

Contents

6

Preface

20

Abbreviations

24

Part I Skeletal Tissues

30

Chapter 1 Types of Skeletal Tissues

32

BONE

33

CARTILAGE

34

DENTINE

34

ENAMEL

36

INTERMEDIATE TISSUES

37

Cementum

37

Enameloid

39

Chondroid and chondroid bone

40

BONE OR CARTILAGE

40

NOTES

41

Chapter 2 Bone

42

DISCOVERY OF THE BASIC STRUCTURE OF BONE

42

CELLULAR BONE

44

OSTEOCYTES

45

INTRAMEMBRANOUS VERSUS ENDOCHONDRAL BONE

46

Embryonic origins

46

Other modes

46

Metabolic differences

47

Morphogenetic differences

47

OSTEONES

48

GROWTH

50

REGIONAL REMODELING

50

AGEING

51

Osteones over time

52

ACELLULAR BONE

53

Caisson disease and abnormal acellular bone in mammals

53

Acellular bone in teleost fishes

53

Development

54

Resorption

54

Repair of fractures

55

Ca++ regulation

55

Aspidine

59

BONE IN CARTILAGINOUS FISHES (SHARKS AND RAYS)

59

NOTES

59

Chapter 3 Cartilage

62

TYPES

62

CHONDRONES

63

CARTILAGE GROWTH

64

CARTILAGE CANALS

65

SECONDARY CENTRES OF OSSIFICATION

65

ELASTIC CARTILAGE

68

Elastic fibres

68

The cells

68

Elastic cartilage intermediates

70

SHARK CARTILAGE

70

Development and mineralization

70

Growth

71

Inhibition of vascular invasion

71

LAMPREYS

71

Mucocartilage

72

Lamprin

72

Mineralization

73

HAGFISH

74

NOTES

74

Part II Natural Experiments

78

Chapter 4 Invertebrate Cartilages

80

CHONDROID, CARTILAGE OR NEITHER

80

ODONTOPHORE CARTILAGE IN THE CHANNELED WHELK, BUSYCON CANALICULATUM

81

BRANCHIAL (GILL BOOK) CARTILAGE IN THE HORSESHOE CRAB, LIMULUS POLYPHEMUS

81

CRANIAL CARTILAGES IN SQUID, CUTTLEFISH AND OCTOPUSES

82

Composition of the extracellular matrix

82

Glycosaminoglycans (GAGs)

82

Collagens

82

TENTACULAR CARTILAGE IN POLYCHAETE ANNELIDS

84

LOPHOPHORE CARTILAGE IN AN ARTICULATE BRACHIOPOD, TEREBRATALIA TRANSVERSA

85

MINERALIZATION OF INVERTEBRATE CARTILAGES

85

CARTILAGE ORIGINS

85

NOTES

91

Chapter 5 Intermediate Tissues

93

CHONDROID AND CHONDROID BONE

95

MODULATION AND INTERMEDIATE TISSUES

95

CARTILAGE FROM FIBROUS TISSUE AND METAPLASIA

97

METAPLASIA OF EPITHELIAL CELLS TO CHONDROBLASTS OR OSTEOBLASTS

97

Chondroid

98

Teleosts

98

Mammals

99

CHONDROID BONE

100

Teleosts

100

Mammals

100

Chondroid bone and pharyngeal jaws

101

TISSUES INTERMEDIATE BETWEEN BONE AND DENTINE

103

Dentine

104

Cementum

105

ENAMELOID: A TISSUE INTERMEDIATE BETWEEN DENTINE AND ENAMEL

106

NOTES

110

Chapter 6 An Evolutionary Perspective

112

FOSSILIZED SKELETAL TISSUES

112

ALL FOUR SKELETAL TISSUES ARE ANCIENT

113

EVOLUTIONARY EXPERIMENTATION

115

Intermediate tissues in fossil agnatha

115

DINOSAUR BONE

116

DEVELOPING FOSSILS

117

PROBLEMATICA

117

PALAEOPATHOLOGY

118

CONODONTS

119

NOTES

120

Part III Unusual Modes of Skeletogenesis

122

Chapter 7 Horns and Ossicones

124

HORNS

124

DISTRIBUTION OF HORNS AS ORGANS

125

Bovidae

125

Rhinos

127

Titanotheres

128

Pronghorn antelopes

128

Giraffes

129

HORN AS A TISSUE

130

DEVELOPMENT AND GROWTH OF HORNS

130

NOTES

131

Chapter 8 Antlers

132

ANTLERS

132

Size and absence

132

INITIATION OF ANTLER FORMATION

133

Pedicle formation

133

The antler bud and dermal–epidermal interactions

134

HORMONAL CONTROL OF PEDICLE DEVELOPMENT AND GROWTH

135

ANTLER REGENERATION

135

The shedding cycle

135

HISTOGENESIS OF ANTLERS

136

White-tailed deer, American elk, European fallow and roe deer

137

Rocky Mountain mule deer

139

Sika deer

139

HORMONES, PHOTOPERIOD AND ANTLER GROWTH

139

Sika deer Photoperiod and testosterone

139

Parathyroid hormone and calcitonin

142

NOTES

142

Chapter 9 Tendons and Sesamoids

144

TENDONS AND SKELETOGENESIS

144

Fibrocartilage in tendons

145

Rodent Achilles tendons

146

Ossification of avian tendons

146

Formation and composition of tendon fibrocartilages

146

Condensation

146

Scleraxis

147

Composition

148

SESAMOIDS

148

Amphibians

149

Reptiles

150

Birds

150

Teleosts

151

NOTES

151

Part IV Stem Cells

154

Chapter 10 Embryonic Stem Cells

156

STEM CELLS

156

SET-ASIDE CELLS

158

STEM CELLS FOR PERIOSTEAL OSTEOGENESIS IN LONG BONES

160

MODULATION OF SYNTHETIC ACTIVITY AND DIFFERENTIATIVE PATHWAYS OF CELL POPULATIONS

162

Fibroblast–chondroblast modulation

162

Modulation of glycosaminoglycan synthesis

162

MODULATION OF SYNTHETIC ACTIVITY AND DIFFERENTIATIVE PATHWAYS IN SINGLE CELLS

163

Degradative activity

163

NOTES

165

Chapter 11 Stem Cells in Adults

167

FIBROBLAST COLONY-FORMING CELLS

167

OSTEOGENIC PRECURSOR CELLS

168

Clonal analysis

169

Lineages of cells

169

Dexamethasone

169

EPITHELIAL INDUCTION OF ECTOPIC BONE

170

Epithelial cell lines

171

NOTES

173

Part V Skeletogenic Cells

176

Chapter 12 Osteo- and Chondroprogenitor Cells

178

IDENTIFYING OSTEO- AND CHONDROPROGENITOR CELLS

179

Execrable terminology

179

Features

179

Cell cycle dynamics

179

BIPOTENTIAL PROGENITOR CELLS FOR OSTEOGENESIS AND CHONDROGENESIS

180

Bipotential cell populations or bipotential cells?

180

Uncovering bipotentiality

180

Discovering bipotentiality

181

Biochemical and metabolic markers

181

Collagen types

182

The tumor suppressor gene p53

182

CONDYLAR CARTILAGE ON THE CONDYLAR PROCESS OF THE MAMMALIAN DENTARY

184

Histodifferentiation and scurvy

184

One or two cell populations

185

Evidence against bipotentiality

185

Evidence supporting bipotentiality

186

All or some?

188

SECONDARY CARTILAGE ON AVIAN MEMBRANE BONES

188

NOTES

193

Chapter 13 Dedifferentiation Provides Progenitor Cells for Jaws and Long Bones

195

CONDYLAR CARTILAGE OF THE MAMMALIAN TEMPOROMANDIBULAR JOINT

195

The temporomandibular joint

195

Hypertrophic chondrocytes survive

195

Hypertrophic chondrocytes transform to osteoprogenitor cells

196

MECKEL’S CARTILAGE

197

Mammalian Meckel’s

197

Prx-1, Prx-2

202

Alx-3

205

Ptx-1

205

DEDIFFERENTIATION DURING ENDOCHONDRAL BONE FORMATION

205

Rodent ribs

206

Mice

206

Rats

206

Appendicular long bones

207

Enzyme activity

207

Evidence from 3 H-thymidine-labeling and other approaches

208

Murine interpubic joints

210

NOTES

210

Chapter 14 Dedifferentiation and Urodele Amphibian Limb Regeneration

212

DEDIFFERENTIATION

212

Morphological dedifferentiation

213

Functional dedifferentiation

213

Hyaluronan

213

BLASTEMA FORMATION

215

Aneurogenic limbs

216

More than one cell fate

216

MYOBLAST AND CHONDROBLAST FATES

217

FACTORS CONTROLLING DEDIFFERENTIATION

218

Innervation

218

Aneurogenic limbs

218

Proliferation

218

Not the stump

219

Electrical signals?

220

Hox genes

220

FgfR-1 and FgfR-2

220

Radical fringe

220

WHY CAN’T FROGS REGENERATE?

221

Augmenting regeneration

223

FINGERTIPS OF MICE, MONKEYS AND MEN

224

Comparison with urodele limb regeneration

224

NOTES

225

Chapter 15 Cells to Make and Cells to Break

226

CLASTS AND BLASTS

226

RESORPTION

226

COUPLING BONE RESORPTION TO BONE FORMATION

227

COUPLING OSTEOBLASTS AND OSTEOCLASTS

227

SOME MOLECULAR PLAYERS

229

WHEN COUPLING GOES AWRY

230

TRAP-STAINING FOR OSTEOCLASTS

231

Mammalian osteoclasts

231

Teleost osteoclasts

232

NITRIC OXIDE – IT’S A GAS

232

PROGENITOR CELLS FOR OSTEOBLASTS AND OSTEOCLASTS

232

Japanese quail–domestic fowl chimaeras

234

OSTEOPETROSIS AND OSTEOCLAST ORIGINS

234

OSTEOCLAST–PHAGOCYTE–MACROPHAGE OR OSTEOCLAST–MONOCYTE LINEAGES?

237

Phagocyte/macrophage origin

237

Interleukins

238

IL-1

238

Osteogenesis

238

Chondrogenesis

238

IL-6

238

IL-10

238

Evidence against monocytes

239

Evidence for monocytes

239

CHONDROCLASTS AND OSTEOCLASTS

240

SYNOVIAL CELLS

240

NOTES

240

Part VI Embryonic Origins

244

Chapter 16 Skeletal Origins: Somitic Mesoderm

246

SOMITIC MESODERM AND THE ORIGIN OF THE VERTEBRAE

246

PARAXIAL MESODERM . SOMITES

247

SCLEROTOME FORMATION AND MIGRATION

247

RESEGMENTATION

249

SOMITIC CONTRIBUTION TO LIMB BUDS

251

Formation of muscle

251

Innervation and myogenesis

251

Signals to initiate a limb bud

252

A COMMENT ON PECTORAL GIRDLES

252

THE CLAVICLE: EVEN MORE SURPRISING

253

Humans

254

Other mammals

254

Mammals that lack clavicles

255

Birds

256

Wishbone or clavicles

256

NOTES

256

Chapter 17 Skeletal Origins: Neural Crest

259

DIFFERENT MESENCHYMES, SAME TISSUES

259

NEURAL CREST AS A SOURCE OF SKELETAL CELLS

260

EVIDENCE OF SKELETOGENIC POTENTIAL

260

Ablation and transplantation experiments

261

Marker experiments

262

3H-thymidine

262

Xenopus laevis–Xenopus borealis chimaeras

262

Quail–chick chimaeras

262

Genetic markers for murine neural crest

263

Information from mutants

265

REGIONALIZATION OF THE CRANIAL NEURAL CREST

268

THE VENTRAL NEURAL TUBE

268

MIGRATION OF NCC: THE ROLE OF THE ECM

269

NOTES

270

Chapter 18 Epithelial–Mesenchymal Interactions

272

URODELE AMPHIBIANS: CHONDROGENESIS

272

AVIAN MANDIBULAR SKELETON: CHONDROGENESIS AND OSTEOGENESIS

273

Isolated mesenchyme – chondrogenesis

276

Isolated mesenchyme – osteogenesis

276

Ruling out any role for Meckel’s cartilage

276

Molecular mechanisms

277

OSTEOGENESIS IN AVIAN MAXILLARY ARCH SKELETON

278

MAMMALIAN MANDIBULAR SKELETON

278

Endothelin-1 (Et-1)

279

The Dlx gene family and craniofacial development

279

TELEOST MANDIBULAR ARCH SKELETON

281

Fgf

281

Hoxd-4 and retinoic acid

281

Limb development

281

Craniofacial development

281

Fish

282

Endothelin-1 (Et-1)

282

Mutants

282

LATERAL LINE, NEUROMASTS AND DERMAL BONE

282

Hope from a single trout

282

TERATOMAS

283

Germ-layer combinations

283

MESENCHYME SIGNALS TO EPITHELIUM

284

SPECIFICITY OF EPITHELIAL–MESENCHYMAL INTERACTIONS

284

NOTES

285

Part VII Getting Started

288

Chapter 19 The Membranous Skeleton: Condensations

290

THE MEMBRANOUS SKELETON

290

CONGENITAL HYDROCEPHALUS (ch)

292

CHARACTERIZING CONDENSATIONS

293

HOW CONDENSATIONS ARISE

295

Altered mitotic activity

295

Changing cell density

295

Aggregation and/or failure to disperse

296

Limb buds and limb regeneration

296

Molecular control

297

ESTABLISHING BOUNDARIES

298

Syndecan and tenascin

298

Fgfs

299

Wnt-7a

299

NOTES

299

Chapter 20 From Condensation to Differentiation

301

CONDENSATION GROWTH

301

Lessons from mutants

302

talpid3

302

bpH

303

ADHERE, PROLIFERATE AND GROW

303

Gap junctions

303

Limb-bud mesenchyme

303

Craniofacial mesenchyme

303

Transcription Factors and Hox genes

303

POSITION AND SHAPE

305

ESTABLISHING CONDENSATION SIZE

306

Bmps

306

Fibronectin

306

Hyaluronan

306

Extrinsic control

307

FROM CONDENSATION TO OVERT DIFFERENTIATION

307

The molecular cascades

309

Bmps

309

Tenascin and N-CAM

309

Runx-2

310

NOTES

311

Chapter 21 Skulls, Eyes and Ears: Condensations and Tissue Interactions

313

THE BONY SKULL

313

Avian skull development

314

Mammalian skull development

316

THE CARTILAGINOUS SKULL

317

Type II collagen

317

Otic, optic and nasal capsules

317

The otic vesicle

317

Morphogenesis

318

TYMPANIC CARTILAGES

319

SCLERAL CARTILAGE

320

Heterogeneity

320

Chondrogenic mesenchyme

320

Pigmented retinal epithelium (PRE)

320

Morphogenesis

321

SCLERAL OSSICLES

322

Ossicle number

322

Scleral papillae

323

An epithelial–mesenchymal interaction

323

Scaleless mutant fowl

324

A role for tenascin?

324

NOTES

326

Part VIII Similarity and Diversity

328

Chapter 22 Chondrocyte Diversity

330

SEGREGATION FROM PRECURSORS

330

PERICHONDRIA

331

MORPHOGENETIC SPECIFICITY

332

CARTILAGES OF DIFFERENT EMBRYOLOGICAL ORIGINS

333

CHONDROCYTE HYPERTROPHY

334

TYPE X COLLAGEN

334

Discovery and regulation of synthesis

334

Syndromes and mutations

335

Type X does not always indicate hypertrophy

336

Regulation of chondrocyte hypertrophy

336

Tgf

337

Bmps

337

Type X and mineralization

338

Birds

338

Frogs

338

Rickets

338

MATRIX VESICLES

338

HYPERTROPHIC CHONDROCYTES AND SUBPERIOSTEAL OSSIFICATION

340

Brachypod (bpH ) in mice

340

Early changes

341

Fibulae

341

A role for Wnts

341

NOTES

343

Chapter 23 Cartilage Diversity

345

STERNAL CHONDROCYTES

345

Synthesis of collagen and glycosaminoglycan (GAG)

345

Differential expression of type II collagen

345

Differential synthesis and organization of collagen types

345

Type X collagen and hypertrophy

347

Fibronectin

347

Nanomelia

347

TUMOUR INVASION

347

VASCULARITY

348

RESISTING VASCULAR INVASION

349

INHIBITORS OF ANGIOGENESIS AND VASCULAR INVASION

350

Vascular endothelial growth factor (Vegf)

350

PTH-PTHrP

351

INTERPUBIC JOINTS AND THE TRANSFORMATION OF CARTILAGE TO LIGAMENT

351

Cartilage . ligament

353

Mediation by oestrogen and relaxin

354

NOTES

355

Chapter 24 Osteoblast and Osteocyte Diversity

357

OSTEOCYTIC OSTEOLYSIS

357

INITIATING OSTEOGENESIS IN VITRO FROM EMBRYONIC MESENCHYME

359

OSTEOGENIC CELLS IN VITRO

359

Folded periostea

361

Establishing isolated osteoblasts and initiating osteogenesis in vitro

362

Calvarial osteoblasts in vitro

362

Isolating subpopulations of calvarial osteogenic cells

363

Chondrogenesis from rodent and avian osteogenic cells

364

Clonal cultures

365

NOTES

365

Chapter 25 Bone Diversity

367

HETEROGENEITY OF RESPONSE TO SODIUM FLUORIDE

367

Enhanced proliferation and osteogenesis

367

Interaction with hormonal action

368

Osteoporosis

369

Chondrogenesis

369

Mineralization

369

Mechanical properties of bone

369

ALVEOLAR BONE OF MAMMALIAN TEETH

369

Origin

369

Physiology and circadian rhythms

369

PENILE AND CLITORAL CARTILAGES AND BONES

371

Os penis

373

Os clitoridis

373

Hormonal control

373

Digits and penile bones

374

Hoxd-12, Hoxd-13 AND POLYPHALANGY

374

OESTROGEN-STIMULATED DEPOSITION OF MEDULLARY BONE IN LAYING HENS

374

OESTROGEN-STIMULATED RESORPTION OF PELVIC BONES IN MICE

375

NOTES

376

Part IX Maintaining Cartilage in Good Times and Bad

378

Chapter 26 Maintaining Differentiated Chondrocytes

380

DIFFERENTIATED CHONDROCYTES

380

SYNTHESIS AND DEPOSITION OF CARTILAGINOUS EXTRACELLULAR MATRIX

381

Synthesis of chondroitin sulphate

381

Synthesis of type II collagen

382

SYNTHESIS OF COLLAGEN AND CHONDROITIN SULPHATE BY THE SAME CHONDROCYTE

382

Collagen gel culture

382

FEEDBACK CONTROL OF THE SYNTHESIS OF GLYCOSAMINOGLYCANS

382

Evidence from organ culture

382

Evidence from chondrocyte cell cultures

383

INTERACTIONS BETWEEN GLYCOSAMINOGLYCANS AND COLLAGENS WITHIN THE EXTRACELLULAR MATRIX

383

Synthesis of collagen and chondroitin sulphate are regulated independently

383

Hypertrophy

384

THE INTERACTIVE EXTRACELLULAR MATRIX

384

NOTES

385

Chapter 27 Maintenance Awry – Achondroplasia

387

GENETIC DISORDERS OF COLLAGEN METABOLISM

387

CARTILAGE ANOMALY (Can) IN MICE

388

ACHONDROPLASIA (Ac) IN RABBITS

389

ACHONDROPLASIA (Cn) IN MICE

389

FgfR-3

389

CHONDRODYSPLASIA (Cho) IN MICE

391

Sprouty

391

BRACHYMORPHIC (Bm) MICE

392

STUMPY (Stm) MICE

392

NANOMELIA (nm) IN DOMESTIC FOWL

392

INDUCED MICROMELIA

393

METABOLIC REGULATION AND STABILITY OF DIFFERENTIATION

393

NOTES

394

Chapter 28 Restarting Mammalian Articular Chondrocytes

396

MAMMALIAN ARTICULAR CHONDROCYTES IN VITRO

396

A role for oxygen

397

Responsiveness to environmental signals

397

MECHANISMS OF ARTICULAR CARTILAGE REPAIR

398

Dividing again in vitro

398

Dividing again in vivo

401

DNA synthesis vs. division

401

Osteotomy and trauma

402

NOTES

402

Chapter 29 Repair of Fractures and Regeneration of Growth Plates

404

A BRIEF HISTORY OF FRACTURE REPAIR

404

Standardizing the fracture

405

Motion

405

Non-unions and persistent non-unions

406

Growth factors and fracture repair

408

Bmps

409

Jump-starting repair

409

REGENERATION OF GROWTH PLATES IN RATS, OPOSSUMS AND MEN

409

NOTES

410

Part X Growing Together

412

Chapter 30 Initiating Skeletal Growth

414

WHAT IS GROWTH?

414

NUMBERS OF STEM CELLS

414

CELL MOVEMENT AND CELL VIABILITY

415

Epithelia and Fgf/FgfR-2

415

METABOLIC REGULATION

415

Creeper (cp) fowl

416

Tibia/fibula

416

Growth retardation

416

A growth inhibitor

417

MECHANICAL STIMULATION AND CHONDROBLAST DIFFERENTIATION/GROWTH

417

MECHANICAL STIMULI AND METABOLIC ACTIVITY

418

Transduction

418

Membrane potential

419

SKELETAL RESPONSES MEDIATED BY cAMP

419

Matrix synthesis and condensation

419

Hormones

419

Teeth and alveolar bone

420

Electrical stimulation

420

cAMP AND PRECHONDROBLAST PROLIFERATION

420

Long bones

420

Limb regeneration

421

Condylar cartilage

421

NOTES

421

Chapter 31 Form, Polarity and Long-Bone Growth

424

FUNDAMENTAL FORM

424

POLARITY

425

Polarized cells

425

LONG-BONE GROWTH

426

Growth plates

427

Growth-plate dynamics

428

New cells, bigger cells and matrix

428

Cell proliferation

429

Birds and mammals

431

Clones and timing

431

Hormonal involvement

432

Growth at opposite ends

432

Diurnal and circadian rhythms

432

Rhythms are under hormonal control

433

A role for the periosteum in regulation of the growth plate?

433

Periosteal sectioning

435

Feedback control

435

NOTES

436

Chapter 32 Long Bone Growth: A Case of Crying Wolff?

438

WOLFF, VON MEYER OR ROUX

438

RESPONSE TO PRESSURE

439

CONTINUOUS OR INTERMITTENT MECHANICAL STIMULI

440

SCALING AND VARIATION: WHEN WOLFF MEETS THE DWARFS

441

GRAVITY

441

TRANSDUCTION OF MECHANICAL STIMULI

443

NOTES

443

Part XI Staying Apart

446

Chapter 33 The Temporomandibular Joint and Synchondroses

448

THE MAMMALIAN TEMPOROMANDIBULAR JOINT (TMJ)

448

Mechanical factors

449

The condylar process

449

The angular process

450

Diet

450

Other functional approaches

451

CRANIAL SYNCHONDROSES

452

As pacemakers

453

Limited growth potential

454

As adaptive

455

NOTES

456

Chapter 34 Sutures and Craniosynostosis

458

SUTURAL GROWTH AS SECONDARY AND ADAPTIVE

458

Alizarin

460

Working with the functional matrix

462

SUTURAL CARTILAGE

463

THE DURA

463

CRANIOSYNOSTOSIS

464

Msx-2

465

Fgf receptors

465

Sutural growth

465

Sutural fusion

466

NOTES

466

Part XII Limb Buds

470

Chapter 35 The Limb Field and the AER

472

THE MESODERMAL LIMB FIELD

472

ECTODERMAL RESPONSIVENESS

473

MESODERM SPECIFIES FORE- VS. HIND LIMB

474

ROLES FOR THE ECTODERM ASSOCIATED WITH THE LIMB FIELD

476

Limb-bud growth

479

Cell proliferation

479

Suppressing the flank

479

Mitotic rate in limb mesenchyme

480

Proximo-distal patterning of the limb skeleton

480

MESENCHYMAL FACTORS MAINTAIN THE AER

481

AEMF

481

The PNZ

481

SPECIFICITY OF LIMB-BUD EPITHELIUM

482

SPECIFICITY OF DISTAL LIMB MESENCHYME

484

THE TEMPORAL COMPONENT

485

A MECHANICAL ROLE FOR THE EPITHELIUM?

485

NOTES

486

Chapter 36 Adding or Deleting an AER

487

AER REGENERATION

487

EXPERIMENTAL REMOVAL OF THE AER

488

FAILURE TO MAINTAIN AN AER: WINGLESS (wl) MUTANTS

489

Mutual interaction

490

EXPERIMENTAL ADDITION OF AN AER

491

MUTANTS WITH DUPLICATED LIMBS

491

An enlarged AER

491

Duplicating the AER

493

Narrow or subdivided AERs

496

NOTES

496

Chapter 37 AERs in Limbed and Limbless Tetrapods

498

AERs ACROSS THE TETRAPODS

498

Amphibians

498

Anurans

498

Urodeles

499

Reptiles

499

Mammals

499

Mice

499

Chimaeras

500

Humans

501

LIMBLESS TETRAPODS

501

Evolutionary patterns

501

Gaining limbs back

501

Ecological correlates of limblessness

502

The developmental basis of limblessness in snakes and legless lizards

503

Inability to maintain an AER

504

Molecular mechanisms

505

NOTES

505

Part XIII Limbs and Limb Skeletons

508

Chapter 38 Axes and Polarity

510

ESTABLISHING AXES AND POLARITY

510

THE A-P AXIS AND THE ZPA

510

A role for Fgf-2

511

dHand and Shh

511

Wnts and Fgf

512

ZPAs abound

513

D-V POLARITY

513

P-D POLARITY AND THE PROGRESS ZONE

513

Extension to amphibian limb regeneration

513

CONNECTING D-V AND P-D POLARITY

514

THALIDOMIDE AND LIMB DEFECTS

514

Time of action

515

Mode of action

515

NOTES

517

Chapter 39 Patterning Limb Skeletons

519

MORPHOGENESIS AND GROWTH

519

PROGRAMMED CELL DEATH (APOPTOSIS)

520

Posterior and anterior necrotic zones (PNZ, ANZ)

520

Interdigital cell death

521

A role for BmpR-1

522

The opaque patch

523

CELL ADHESION AND MORPHOGENESIS: TALPID (ta) MUTANT FOWL

523

Talpid2

524

Talpid3

524

NOTES

526

Chapter 40 Before Limbs There Were Fins

527

DORSAL MEDIAN UNPAIRED FINS

527

Teleost fish

527

Life style

527

Developmental origins

528

Evolutionary origins

528

PAIRED FINS

532

Fin buds and fin folds

532

Fin skeletons

533

Retinoic acid

534

…Regeneration

535

An RA-Shh link

535

FIN REGENERATION

536

FINS . SUCKERS

536

FINS . LIMBS22

536

FROM MANY TO FEWER DIGITS

537

NOTES

538

Part XIV Backbones and Tails

540

Chapter 41 Vertebral Chondrogenesis: Spontaneous or Not?

542

SELF-DIFFERENTIATION OR INDUCTION?

542

MORPHOGENESIS

543

Spinal ganglia and vertebral morphogenesis

544

CHONDROGENESIS IN VITRO

545

SPONTANEOUS CHONDROGENESIS?

545

Environmental influences

546

Cell division and cell death

546

NOTES

547

Chapter 42 The Search for the Magic Bullet

548

INTEGRITY OF NOTOCHORD/SPINAL CORD AND VERTEBRAL MORPHOGENESIS

548

Fish skeletal defects

548

FOR HOW LONG ARE NOTOCHORD AND SPINAL CORD ACTIVE?

549

CAN DERMOMYOTOME OR LATERAL-PLATE MESODERM CHONDRIFY?

549

THE SEARCH FOR THE MAGIC BULLET

550

A role for ectoderm?

550

Cartilage cells as cartilage inducers

551

CHONDROCYTE EXTRACELLULAR MATRIX

552

NOTOCHORD AND SPINAL CORD EXTRACELLULAR MATRICES

552

GLYCOSAMINOGLYCANS

552

Collagens

553

FUNCTION OF NOTOCHORD AND SPINAL CORD MATRIX PRODUCTS

554

KEY ROLES FOR Pax-1 AND Pax-9

554

CONCLUSIONS

556

NOTES

556

Chapter 43 Tail Buds, Tails and Taillessness

558

EMBRYOLOGICAL ORIGIN

558

THE VENTRAL EPITHELIAL RIDGE (VER)

558

Tbx GENES

560

TAIL GROWTH

560

Genes or environment

560

Temperature

560

TEMPERATURE-INDUCED CHANGE IN VERTEBRAL NUMBER: MERISTIC VARIATION

563

Natural variation and adaptive value

563

Studies with teleost fish

564

Studies with avian embryos

564

Studies with mammals

564

Studies with amphibian embryos

565

Temperature plus…

565

TAILLESSNESS

565

AND THEREBY HANGS A TAIL

566

Fish tails

566

LIZARDS’ TAILS: AUTOTOMY

566

NOTES

566

Part XV Evolutionary Skeletal Biology

568

Chapter 44 Evolutionary Experimentation Revisited

570

VARIATION

570

Variation of individual elements

570

Variation that tests a hypothesis

571

Pattern variation

572

ADAPTIVE VALUE

572

METAMORPHOSIS

573

MINIATURIZATION

573

HETEROCHRONY

576

Process heterochrony

576

Coupling and uncoupling dermal and endochondral ossification

576

Primates

577

NEOMORPHS

577

The preglossale of the common pigeon

577

Digits

578

Secondary jaw articulations

578

A Boid intramaxillary joint

579

Regenerated joints

579

Wishbones

579

Limb rudiments in whales

579

Turtle shells

580

Development

580

Evolutionary history

580

ATAVISMS

583

Limb skeletal elements in whales

584

Mammalian teeth

584

Teleosts and taxic atavisms

584

Late-developing bones in anurans

585

NEOMORPH OR ATAVISM?

585

NOTES

586

References

588

Index

766