Calculations for Molecular Biology and Biotechnology - A Guide to Mathematics in the Laboratory 2e

Calculations for Molecular Biology and Biotechnology - A Guide to Mathematics in the Laboratory 2e

von: Frank H. Stephenson

Elsevier Trade Monographs, 2010

ISBN: 9780123756916 , 460 Seiten

2. Auflage

Format: PDF, ePUB, OL

Kopierschutz: DRM

Windows PC,Mac OSX geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Apple iPod touch, iPhone und Android Smartphones Online-Lesen für: Windows PC,Mac OSX,Linux

Preis: 54,95 EUR

Mehr zum Inhalt

Calculations for Molecular Biology and Biotechnology - A Guide to Mathematics in the Laboratory 2e


 

Front Cover

1

Calculations for Molecular Biology and Biotechnology

4

Copyright Page

5

Contents

6

CHAPTER 1 Scientific Notation and Metric Prefixes

16

Introduction

16

1.1 Significant Digits

16

1.1.1 Rounding Off Significant Digits in Calculations

17

1.2 Exponents and Scientific Notation

18

1.2.1 Expressing Numbers in Scientific Notation

18

1.2.2 Converting Numbers from Scientific Notation to Decimal Notation

20

1.2.3 Adding and Subtracting Numbers Written in Scientific Notation

21

1.2.4 Multiplying and Dividing Numbers Written in Scientific Notation

22

1.3 Metric Prefixes

25

1.3.1 Conversion Factors and Canceling Terms

25

Chapter Summary

29

CHAPTER 2 Solutions, Mixtures, and Media

30

Introduction

30

2.1 Calculating Dilutions – A General Approach

30

2.2 Concentrations by a Factor of X

32

2.3 Preparing Percent Solutions

34

2.4 Diluting Percent Solutions

35

2.5 Moles and Molecular Weight – Definitions

39

2.5.1 Molarity

40

2.5.2 Preparing Molar Solutions in Water with Hydrated Compounds

43

2.5.3 Diluting Molar Solutions

45

2.5.4 Converting Molarity to Percent

47

2.5.5 Converting Percent to Molarity

48

2.6 Normality

49

2.7 pH

50

2.8 pK[sub(a)] and the Henderson–Hasselbalch Equation

55

Chapter Summary

58

CHAPTER 3 Cell Growth

60

3.1 The Bacterial Growth Curve

60

3.1.1 Sample Data

64

3.2 Manipulating Cell Concentration

65

3.3 Plotting OD[sub(550)] vs. Time on a Linear Graph

68

3.4 Plotting the Logarithm of OD[sub(550)] vs. Time on a Linear Graph

69

3.4.1 Logarithms

69

3.4.2 Sample OD[sub(550)] Data Converted to Logarithm Values

69

3.4.3 Plotting Logarithm OD[sub(550)] vs. Time

69

3.5 Plotting the Logarithm of Cell Concentration vs. Time

71

3.5.1 Determining Logarithm Values

71

3.6 Calculating Generation Time

72

3.6.1 Slope and the Growth Constant

72

3.6.2 Generation Time

73

3.7 Plotting Cell Growth Data on a Semilog Graph

75

3.7.1 Plotting OD[sub(550)] vs. Time on a Semilog Graph

75

3.7.2 Estimating Generation Time from a Semilog Plot of OD[sub(550)] vs. Time

76

3.8 Plotting Cell Concentration vs. Time on a Semilog Graph

77

3.9 Determining Generation Time Directly from a Semilog Plot of Cell Concentration vs. Time

78

3.10 Plotting Cell Density vs. OD[sub(550)] on a Semilog Graph

79

3.11 The Fluctuation Test

81

3.11.1 Fluctuation Test Example

82

3.11.2 Variance

84

3.12 Measuring Mutation Rate

86

3.12.1 The Poisson Distribution

86

3.12.2 Calculating Mutation Rate Using the Poisson Distribution

87

3.12.3 Using a Graphical Approach to Calculate Mutation Rate from Fluctuation Test Data

88

3.12.4 Mutation Rate Determined by Plate Spreading

93

3.13 Measuring Cell Concentration on a Hemocytometer

94

Chapter Summary

95

References

96

CHAPTER 4 Working with Bacteriophages

98

Introduction

98

4.1 Multiplicity of Infection (moi)

98

4.2 Probabilities and Multiplicity of Infection (moi)

100

4.3 Measuring Phage Titer

106

4.4 Diluting Bacteriophage

108

4.5 Measuring Burst Size

110

Chapter Summary

113

CHAPTER 5 Nucleic Acid Quantification

114

5.1 Quantification of Nucleic Acids by Ultraviolet (UV) Spectroscopy

114

5.2 Determining the Concentration of Double-Stranded DNA (dsDNA)

115

5.2.1 Using Absorbance and an Extinction Coefficient to Calculate Double-Stranded DNA (dsDNA) Concentration

117

5.2.2 Calculating DNA Concentration as a Millimolar (mM) Amount

119

5.2.3 Using PicoGreen® to Determine DNA Concentration

120

5.3 Determining the Concentration of Single-Stranded DNA (ssDNA) Molecules

123

5.3.1 Single-Stranded DNA (ssDNA) Concentration Expressed in μg/mL

123

5.3.2 Determining the Concentration of High-Molecular-Weight Single-Stranded DNA (ssDNA) in pmol/μL

124

5.3.3 Expressing Single-Stranded DNA (ssDNA) Concentration as a Millimolar (mM) Amount

125

5.4 Oligonucleotide Quantification

126

5.4.1 Optical Density (OD) Units

126

5.4.2 Expressing an Oligonucleotide's Concentration in μg/mL

126

5.4.3 Oligonucleotide Concentration Expressed in pmol/μL

127

5.5 Measuring RNA Concentration

130

5.6 Molecular Weight, Molarity, and Nucleic Acid Length

130

5.7 Estimating DNA Concentration on an Ethidium Bromide-Stained Gel

135

Chapter Summary

136

CHAPTER 6 Labeling Nucleic Acids with Radioisotopes

138

Introduction

138

6.1 Units of Radioactivity – The Curie (Ci)

138

6.2 Estimating Plasmid Copy Number

139

6.3 Labeling DNA by Nick Translation

141

6.3.1 Determining Percent Incorporation of Radioactive Label from Nick Translation

142

6.3.2 Calculating Specific Radioactivity of a Nick Translation Product

143

6.4 Random Primer Labeling of DNA

143

6.4.1 Random Primer Labeling – Percent Incorporation

144

6.4.2 Random Primer Labeling – Calculating Theoretical Yield

145

6.4.3 Random Primer Labeling – Calculating Actual Yield

146

6.4.4 Random Primer Labeling – Calculating Specific Activity of the Product

147

6.5 Labeling 3′ Termini with Terminal Transferase

148

6.5.1 3′-end Labeling with Terminal Transferase – Percent Incorporation

148

6.5.2 3′-end Labeling with Terminal Transferase – Specific Activity of the Product

149

6.6 Complementary DNA (cDNA) Synthesis

150

6.6.1 First Strand cDNA Synthesis

150

6.6.2 Second Strand cDNA Synthesis

154

6.7 Homopolymeric Tailing

156

6.8 In Vitro Transcription

162

Chapter Summary

164

CHAPTER 7 Oligonucleotide Synthesis

170

Introduction

170

7.1 Synthesis Yield

171

7.2 Measuring Stepwise and Overall Yield by the Dimethoxytrityl (DMT) Cation Assay

173

7.2.1 Overall Yield

174

7.2.2 Stepwise Yield

175

7.3 Calculating Micromoles of Nucleoside Added at Each Base Addition Step

176

Chapter Summary

177

CHAPTER 8 The Polymerase Chain Reaction (PCR)

180

Introduction

180

8.1 Template and Amplification

180

8.2 Exponential Amplification

182

8.3 Polymerase Chain Reaction (PCR) Efficiency

185

8.4 Calculating the T[sub(m)] of the Target Sequence

188

8.5 Primers

191

8.6 Primer T[sub(m)]

196

8.6.1 Calculating T[sub(m)] Based on Salt Concentration, G/C Content, and DNA Length

197

8.6.2 Calculating T[sub(m)] Based on Nearest-Neighbor Interactions

198

8.7 Deoxynucleoside Triphosphates (dNTPs)

204

8.8 DNA Polymerase

206

8.8.1 Calculating DNA Polymerase's Error Rate

207

8.9 Quantitative Polymerase Chain Reaction (PCR)

210

Chapter Summary

222

References

224

Further Reading

224

CHAPTER 9 The Real-time Polymerase Chain Reaction (RT-PCR)

226

Introduction

226

9.1 The Phases of Real-time PCR

227

9.2 Controls

230

9.3 Absolute Quantification by the TaqMan Assay

231

9.3.1 Preparing the Standards

231

9.3.2 Preparing a Standard Curve for Quantitative Polymerase Chain Reaction (qPCR) Based on Gene Copy Number

235

9.3.3 The Standard Curve

239

9.3.4 Standard Deviation

242

9.3.5 Linear Regression and the Standard Curve

245

9.4 Amplification Efficiency

247

9.5 Measuring Gene Expression

251

9.6 Relative Quantification – The ΔΔC[sub(T)] Method

253

9.6.1 The 2[equation omitted] Method – Deciding on an Endogenous Reference

254

9.6.2 The 2[equation omitted] Method – Amplification Efficiency

265

9.6.3 The 2[equation omitted] Method – is the Reference Gene Affected by the Experimental Treatment?

274

9.7 The Relative Standard Curve Method

291

9.7.1 Standard Curve Method for Relative Quantitation

291

9.8 Relative Quantification by Reaction Kinetics

309

9.9 The R[sub(0)] Method of Relative Quantification

314

9.10 The Pfaffl Model

318

Chapter Summary

321

References

325

Further Reading

325

CHAPTER 10 Recombinant DNA

328

Introduction

328

10.1 Restriction Endonucleases

328

10.1.1 The Frequency of Restriction Endonuclease Cut Sites

330

10.2 Calculating the Amount of Fragment Ends

331

10.2.3 The Amount of Ends Generated by Multiple Cuts

332

10.3 Ligation

334

10.3.1 Ligation Using λ-Derived Vectors

337

10.3.2 Packaging of Recombinant λ Genomes

342

10.3.3 Ligation Using Plasmid Vectors

345

10.3.4 Transformation Efficiency

350

10.4 Genomic Libraries – How Many Clones Do You Need?

351

10.5 cDNA Libraries – How Many Clones are Enough?

352

10.6 Expression Libraries

354

10.7 Screening Recombinant Libraries by Hybridization to DNA Probes

355

10.7.1 Oligonucleotide Probes

357

10.7.2 Hybridization Conditions

359

10.7.3 Hybridization Using Double-Stranded DNA (dsDNA) Probes

365

10.8 Sizing DNA Fragments by Gel Electrophoresis

366

10.9 Generating Nested Deletions Using Nuclease BAL 31

374

Chapter Summary

378

References

382

CHAPTER 11 Protein

384

Introduction

384

11.1 Calculating a Protein's Molecular Weight from Its Sequence

384

11.2 Protein Quantication by Measuring Absorbance at 280 nm

388

11.3 Using Absorbance Coefficients and Extinction Coefficients to Estimate Protein Concentration

389

11.3.1 Relating Absorbance Coefficient to Molar Extinction Coefficient

392

11.3.2 Determining a Protein's Extinction Coefficient

393

11.4 Relating Concentration in Milligrams Per Milliliter to Molarity

395

11.5 Protein Quantitation Using A[sub(280)] When Contaminating Nucleic Acids are Present

397

11.6 Protein Quantification at 205 nm

398

11.7 Protein Quantitation at 205 nm When Contaminating Nucleic Acids are Present

398

11.8 Measuring Protein Concentration by Colorimetric Assay – The Bradford Assay

400

11.9 Using β-Galactosidase to Monitor Promoter Activity and Gene Expression

402

11.9.1 Assaying β-Galactosidase in Cell Culture

403

11.9.2 Specific Activity

405

11.9.3 Assaying β-Galactosidase from Purified Cell Extracts

405

11.10 Thin Layer Chromatography (TLC) and the Retention Factor (R[sub(f)])

407

11.11 Estimating a Protein's Molecular Weight by Gel Filtration

409

11.12 The Chloramphenicol Acetyltransferase (CAT) Assay

414

11.12.1 Calculating Molecules of Chloramphenicol Acetyltransferase (CAT)

416

11.13 Use of Luciferase in a Reporter Assay

418

11.14 In Vitro Translation – Determining Amino Acid Incorporation

419

11.15 The Isoelectric Point (pI) of a Protein

420

Chapter Summary

423

References

426

Further Reading

427

CHAPTER 12 Centrifugation

428

Introduction

428

12.1 Relative Centrifugal Force (RCF) (g Force)

428

12.1.1 Converting g Force to Revolutions Per Minute (rpm)

430

12.1.2 Determining g Force and Revolutions Per Minute (rpm) by Use of a Nomogram

431

12.2 Calculating Sedimentation Times

433

Chapter Summary

435

References

436

Further Reading

436

CHAPTER 13 Forensics and Paternity

438

Introduction

438

13.1 Alleles and Genotypes

439

13.1.1 Calculating Genotype Frequencies

440

13.1.2 Calculating Allele Frequencies

441

13.2 The Hardy–Weinberg Equation and Calculating Expected Genotype Frequencies

442

13.3 The Chi-Square Test – Comparing Observed to Expected Values

445

13.3.1 Sample Variance

449

13.3.2 Sample Standard Deviation

450

13.4 The Power of Inclusion (P[sub(i)])

450

13.5 The Power of Discrimination (P[sub(d)])

451

13.6 DNA Typing and Weighted Average

452

13.7 The Multiplication Rule

453

13.8 The Paternity Index (PI)

454

13.8.1 Calculating the Paternity Index (PI) When the Mother's Genotype is not Available

456

13.8.2 The Combined Paternity Index (CPI)

458

Chapter Summary

459

References

460

Further Reading

460

Appendix A

462

Index

470

A

470

B

470

C

470

D

470

E

470

F

471

G

471

H

471

I

471

L

471

M

471

N

471

O

472

P

472

Q

472

R

472

S

473

T

473

V

473

Z

473