Partial Differential Equations - Mathematical Techniques for Engineers

von: Marcelo Epstein

Springer-Verlag, 2017

ISBN: 9783319552125 , 261 Seiten

Format: PDF, OL

Kopierschutz: Wasserzeichen

Windows PC,Mac OSX geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Online-Lesen für: Windows PC,Mac OSX,Linux

Preis: 171,19 EUR

Mehr zum Inhalt

Partial Differential Equations - Mathematical Techniques for Engineers


 

Preface

7

Contents

8

Part I Background

13

1 Vector Fields and Ordinary Differential Equations

14

1.1 Introduction

14

1.2 Curves and Surfaces in mathbbRn

15

1.2.1 Cartesian Products, Affine Spaces

15

1.2.2 Curves in mathbbRn

17

1.2.3 Surfaces in mathbbR3

19

1.3 The Divergence Theorem

20

1.3.1 The Divergence of a Vector Field

20

1.3.2 The Flux of a Vector Field over an Orientable Surface

21

1.3.3 Statement of the Theorem

22

1.3.4 A Particular Case

22

1.4 Ordinary Differential Equations

23

1.4.1 Vector Fields as Differential Equations

23

1.4.2 Geometry Versus Analysis

24

1.4.3 An Example

25

1.4.4 Autonomous and Non-autonomous Systems

27

1.4.5 Higher-Order Equations

28

1.4.6 First Integrals and Conserved Quantities

29

1.4.7 Existence and Uniqueness

32

1.4.8 Food for Thought

33

References

35

2 Partial Differential Equations in Engineering

36

2.1 Introduction

36

2.2 What is a Partial Differential Equation?

37

2.3 Balance Laws

38

2.3.1 The Generic Balance Equation

39

2.3.2 The Case of Only One Spatial Dimension

42

2.3.3 The Need for Constitutive Laws

45

2.4 Examples of PDEs in Engineering

47

2.4.1 Traffic Flow

47

2.4.2 Diffusion

48

2.4.3 Longitudinal Waves in an Elastic Bar

49

2.4.4 Solitons

50

2.4.5 Time-Independent Phenomena

51

2.4.6 Continuum Mechanics

52

References

58

Part II The First-Order Equation

59

3 The Single First-Order Quasi-linear PDE

60

3.1 Introduction

60

3.2 Quasi-linear Equation in Two Independent Variables

62

3.3 Building Solutions from Characteristics

65

3.3.1 A Fundamental Lemma

65

3.3.2 Corollaries of the Fundamental Lemma

66

3.3.3 The Cauchy Problem

67

3.3.4 What Else Can Go Wrong?

69

3.4 Particular Cases and Examples

70

3.4.1 Homogeneous Linear Equation

70

3.4.2 Non-homogeneous Linear Equation

71

3.4.3 Quasi-linear Equation

73

3.5 A Computer Program

80

References

83

4 Shock Waves

84

4.1 The Way Out

84

4.2 Generalized Solutions

85

4.3 A Detailed Example

87

4.4 Discontinuous Initial Conditions

91

4.4.1 Shock Waves

91

4.4.2 Rarefaction Waves

94

References

97

5 The Genuinely Nonlinear First-Order Equation

98

5.1 Introduction

98

5.2 The Monge Cone Field

99

5.3 The Characteristic Directions

101

5.4 Recapitulation

105

5.5 The Cauchy Problem

107

5.6 An Example

108

5.7 More Than Two Independent Variables

110

5.7.1 Quasi-linear Equations

110

5.7.2 Non-linear Equations

113

5.8 Application to Hamiltonian Systems

114

5.8.1 Hamiltonian Systems

114

5.8.2 Reduced Form of a First-Order PDE

115

5.8.3 The Hamilton--Jacobi Equation

116

5.8.4 An Example

117

References

121

Part III Classification of Equations and Systems

122

6 The Second-Order Quasi-linear Equation

123

6.1 Introduction

123

6.2 The First-Order PDE Revisited

125

6.3 The Second-Order Case

126

6.4 Propagation of Weak Singularities

129

6.4.1 Hadamard's Lemma and Its Consequences

129

6.4.2 Weak Singularities

131

6.4.3 Growth and Decay

133

6.5 Normal Forms

135

References

138

7 Systems of Equations

139

7.1 Systems of First-Order Equations

139

7.1.1 Characteristic Directions

139

7.1.2 Weak Singularities

141

7.1.3 Strong Singularities in Linear Systems

142

7.1.4 An Application to the Theory of Beams

143

7.1.5 Systems with Several Independent Variables

145

7.2 Systems of Second-Order Equations

148

7.2.1 Characteristic Manifolds

148

7.2.2 Variation of the Wave Amplitude

150

7.2.3 The Timoshenko Beam Revisited

152

7.2.4 Air Acoustics

155

7.2.5 Elastic Waves

158

References

161

Part IV Paradigmatic Equations

162

8 The One-Dimensional Wave Equation

163

8.1 The Vibrating String

163

8.2 Hyperbolicity and Characteristics

164

8.3 The d'Alembert Solution

165

8.4 The Infinite String

166

8.5 The Semi-infinite String

169

8.5.1 D'Alembert Solution

169

8.5.2 Interpretation in Terms of Characteristics

171

8.5.3 Extension of Initial Data

173

8.6 The Finite String

174

8.6.1 Solution

174

8.6.2 Uniqueness and Stability

177

8.6.3 Time Periodicity

179

8.7 Moving Boundaries and Growth

180

8.8 Controlling the Slinky?

181

8.9 Source Terms and Duhamel's Principle

183

References

188

9 Standing Waves and Separation of Variables

189

9.1 Introduction

189

9.2 A Short Review of the Discrete Case

190

9.3 Shape-Preserving Motions of the Vibrating String

195

9.4 Solving Initial-Boundary Value Problems by Separation of Variables

198

9.5 Shape-Preserving Motions of More General Continuous Systems

204

9.5.1 String with Variable Properties

204

9.5.2 Beam Vibrations

207

9.5.3 The Vibrating Membrane

209

References

214

10 The Diffusion Equation

215

10.1 Physical Considerations

215

10.1.1 Diffusion of a Pollutant

215

10.1.2 Conduction of Heat

218

10.2 General Remarks on the Diffusion Equation

220

10.3 Separating Variables

221

10.4 The Maximum--Minimum Theorem and Its Consequences

222

10.5 The Finite Rod

225

10.6 Non-homogeneous Problems

227

10.7 The Infinite Rod

229

10.8 The Fourier Series and the Fourier Integral

231

10.9 Solution of the Cauchy Problem

234

10.10 Generalized Functions

236

10.11 Inhomogeneous Problems and Duhamel's Principle

240

References

244

11 The Laplace Equation

245

11.1 Introduction

245

11.2 Green's Theorem and the Dirichlet and Neumann Problems

246

11.3 The Maximum-Minimum Principle

249

11.4 The Fundamental Solutions

250

11.5 Green's Functions

252

11.6 The Mean-Value Theorem

254

11.7 Green's Function for the Circle and the Sphere

255

References

258

Index

259