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PREFACFE

This book is a much improved version of a set of notes developed for
a one-week course taught at the International Center for Mechanical
Sciences (CISM) in Udine, Italy, July 21-25, 2005. The support and
encouragement of the CISM staff and its Rector, Professor Giulio
Maier are gratefully acknowledged for providing the opportunity to
bring together different aspects of the problem of impact on composite
structures. The opportunity to work with experts in different areas
from different countries and to teach a very diverse group of students
was also very much appreciated.

As the course coordinator, I want to express my thanks to the
colleagues who participated in this long term venture: Professor Gio-
vanni Belingardi from the Politecnico di Torino, Italy; Professor
Wesley Cantwell from the University of Liverpool, England; Professor
Uday Vaidya, University of Alabama-Birmingham, USA, and Profes-
sor Ramon Zaera from the University Carlos III, Madrid, Spain. It
is also a pleasure to acknowledge the contributions of Professor Jorge
Ambrosio from the University of Lisbon, Portugal who taught a por-
tion of the course in Udine.

The book is intended for beginning graduate students and practi-
tioners in industry who need an introduction with a strong technical
background to this subject, one that enables them to pursue their own
research or design activities and to pursue further studies on their
own. We have attempted to present a broad range of topics. The two
common threads throughout the book are that it deals with structures
made of composite materials and that those structures are subjected
to impacts. The structures can be part of aircrafts, motor vehicles,
or armored military vehicles, for example. The impacts can be tool
drops, ballistic projectiles or vehicle crashes. The book examines ways
to model the impact event, to determine the size and severity of the
damage and discusses general trends observed during erperiments.

Serge Abrate
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Introduction to the Mechanics of
Composite Materials

Serge Abrate

Department of Mechanical Engineering and Energy Processes, Southern Illinois
University, Carbondale, IL, USA

This chapter recalls the basic notions of stress and strain, the equations of
motion of linear elasticity, and the constitutive equations for linear isotropic and
orthotropic materials. Then, we introduce some of the most commonly used
criteria for predicting failure inside a lamina and the delamination of the
interface between adjacent layers. Finally, we discuss two types of approaches
used to predict the propagation of delaminations.

1- Stress

This section introduces the concept of stress, the stress tensor as a quantity
defining the intensity of the loading at a point, and the equations of motion of a
solid in terms of these stress components. To define the intensity of the loading
at a given point P in a solid, one can make an imaginary cut through that point.

A small area AA surrounding P, will be subjected to a force F that has a
component F, in the normal direction and a component F, in the tangential
direction. Dividing a force by the area it acts on gives a measure of the intensity
of the loading. Expecting this load to vary from point to point, we define the
normal stress ©, as the limit of the ratio F,/AA as AA — 0. The shear stress

o, is defined as the limit of the ratio F,/AA as AA — 0. Since the shear stress

can have an arbitrary orientation on the surface, it is usually split into two ortho-
gonal components to account for its orientation. Therefore, on a surface passing
through a point P there are three stress components: a normal stress and two
shear stresses. The stresses have units of pressure and vary from point to point
and also with the orientation of the surface. In the next section we discuss how
to fully describe the state of stress at one point.

1.1- Stress Components Acting on a Small Element
Consider a small parallepiped with dimensions Ax.Ay.Az . A face is called an

x-face if the outside normal to that surface is oriented in the x direction. Similar-
ly, for a y-face, the normal is oriented in the y direction and for a z-face the
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normal is in the z direction. A face of that element is called a positive face if the
outside normal to that surface is pointing in the positive axis direction.

On a given face, three are 3 stress components: one normal stress and two
shear stresses. On a positive x-face (Figure 1), the sign convention is that the
stresses are positive in the positive x, y, and z direction. The stress components
are designated by two indices. The first index denotes the surface that compo-
nent is acting on. The second index indicates the direction in which that stress
component is acting. For example, Figure 1 shows the three stress components
acting on a positive x face. The first index is x for all three components because
they are all acting on the x-face and then, 6, , 6, and G, are acting in the
positive x, y and z direction respectively. The same convention is shown to

apply to the three stress components acting on a positive z-face in Figure 2 and
Figure 3 shows the sign convention applied to a negative y-face.

A
z

=)

Figure 1. Stress components acting on a positive x face

0,,,0

XX Y Xy? Y Xz

o,,=0

yx 2 Xz zx 2

These three figures define a total of nine componentsc

6,,0,,0,,0,,0,,0, and it can be shown thatc =0 and

yy? yXx 2 yz° Y zz? Y zx?

6,, =6, . Therefore, there are only six independent stress components that can

be written as
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Gxx ny ze
[G] = ny ny Gyz (1)
ze yz 7z

[G] is called the stress tensor. A tensor is a quantity that follows transformation
laws. One way to look at it is to think of a vector in space as a quantity with
three components. If this vector joins two points in space or represents a force, it
is a physical quantity with a given magnitude and orientation. If its components
are known in one coordinate system, one can calculate the components of the
vector in another coordinate system. Tensors are a generalization of vectors and
follow some transformation laws when changing coordinate systems.

2 n

/y

Figure 2. Stress components acting on a positive z face

1.2- Surface Tractions on an Arbitrary Surface

From the stress tensor (Equation 1), one can determine the loads acting on
any surface passing through that point. Consider a wedge with three faces
oriented in the x-, y- and z-directions and a fourth face oriented in the direction
of an arbitrary vector n (Figure 4). The stresses acting on the first three faces
are components of [o], the stress tensor in the xyz coordinate system. On the
face oriented in the n direction, we define the surface tractions ty, t, and t, which
are forces per unit area acting in the X, y, and z directions. Stresses and surfaces
tractions have the same dimension but stresses have components that are normal
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or in the place of the surface they are acting on while surface tractions are acting
in the x, y, z directions.

y

Figure 3. Stress components acting on a negative y face

To establish the relationship between the stress tensor [0] and the surface
tensions { t } we consider the equilibrium of the wedge (Figure 4) and find that

tX GXX ny GXZ nX
t,t=|0, ©, O,[n, or  {t}=[o]{n} )
tZ GXZ Gyz GZZ nZ

where i can be either x, y or z. Equation 2 shows that the stress tensor
[G]completely defines the state of stress at that point because, given [G], one can
calculate the surface tractions ty, t, and t, acting on an arbitrary surface defined
by its normal n. The normal stress on an arbitrary surface is the dot product of
the surface traction vector and the normal to the surface. That is

oy =t

X

nx
t, t]in, f=t;n +t,n, +t,n, 3)
n

z
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The shear stress acting on that surface is

tx nx
{T}: ty _GN ny (4)
tz nz

Equation 4 gives the components of that shear stress in the xyz coordinate
system. Egs. (3, 4) show that, given [G] in one coordinate system, the stresses
acting on any surface passing through that point can be determined. The stress
tensor [G] completely defines the state of stress at that point.

Figure 4. Surface tractions acting on an arbitrary surface

1.3- Equations of Motion
Consider a portion of a body with a volume V and a surface S. The surface is

subjected to surface tractions t, the body is also subjected to body forces B,
and the position of an arbitrary point inside the body is defined by the vector r .
Using Newton’s law, the sum of the forces acting on the body gives
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jsfds+ jvﬁdv = jvp'r"dv (5)

where p is the density of the material. In this expression we note that:

° Lf dS is the some of the forces acting on the external surface S
° LEdV is the resultant of the body forces acting on the volume V

e - jv p? dV is the inertia force

Using Equation (2) and applying the divergence theorem, the first term
becomes

Lde:L?.ﬁdS:jVVEdV (6)
Then, for this volume V, the motion is governed by
jv [7§+§ - pﬂ dv =0 (7)
This equation holds for any volume inside the body so we must have
Vo+B-pi=0 ®

This vector equation (Equation 8) can be written as three scalar equations

dc.. 90, Jo

2R =4 X =il
ox dy 0z
! 0 d
Ow  Pw , B 4y 2oy ©)
ox dy oz
and
d
9o, + Oy + 99, +Z=pw
ox dy 0z

X, Y, and Z are the components of the body force vector B. Equations 9 are the
equations of motion of the linear theory of elasticity in terms of stresses and
displacements. In the following, we will see how the stresses are related to the
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deformation of the body and how the three equations of motion can be expressed
in terms of the three displacements u, v, and w.

2-Strain

Since stresses define the loading at a point, we also need to describe the
deformation at that point and then relate those two measures knowing the
behavior of the material. To describe the deformation at one point we consider
three orthogonal line segments. After deformation, the length of each segment
will be different and the angle between any two of those segments will be
different from 90 degrees. We define three linear strains from the changes in
length of these three line segments and three shear strains from the changes in
the angles between them. These six strains will then describe the deformation at
that point.

2.1- Linear Strains

Consider a small line segment of length L oriented in the x direction before
deformation (Figure 5). After deformation, its length becomes L+ AL and the
linear strain in the x-direction is defined as €, =AL/L. In terms of u, the

. . L du . o L
displacement in the x-direction, AL =—.L so the linear strain in the x-direction

X
is g, = Ju
XX aX N
Similarly, considering line segments oriented in the y and z directions we can
. . v ow
define the other two linear strain components: € , =— and €, =—.
dy 0z
A
y u
g L+AL
du
u+—1L
ox
L > X

Figure 5. Deformation of a small line element in the x direction
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2.2- Shear Strains

Shear strains provide another measure of the deformation at a point.
Consider three small line segments initially oriented along the x, y and z
directions respectively. These three segments are perpendicular to each other
initially but, after deformation, the angle between them is no longern/2. For
example, the angle between the segments oriented in the x and y directions will

be E—s and € is defined as the shear strain in the xy plane. Figure 7 shows
2 Xy Xy

ou ov . . du  ow ov  ow
that ¢ =—+—. Similarly, ¢, =—+—and g ,=—+—.
Y dy  ox dz Jx dz dy

The six strain components defined here can be shown to from a tensor

8xx 8xy 8)(7
[e] =g, &, €, (10)
sz yz 877

called the strain tensor. It can be shown that the strain tensor defines the
deformation at that point. That is, knowing [¢], one can calculate the change in

length of any short line segment passing through that point or the change of
angle between any two line segments at that point.

Ju

Yﬂk g

Figure 6. Deformations in the xy plane
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3- Stress-Strain Behavior

In describing the mechanical behavior of materials, several definitions must
be introduced. A material is isotropic if the behavior is the same in all
directions. A material is homogeneous if its properties are the same as we move
from point to point inside the material. In general, steel and cast iron are
isotropic and are considered to be homogeneous on a macroscopic scale even if
under a microscope one can observe different grains with different shapes and
properties. Sometimes metals are not isotropic after rolling operations for
example. Composite materials often consist of strong fibers embedded in a soft
matrix. On a microscopic scale those materials are not homogeneous but on a
macroscopic scale (many times the diameter of a fiber) these materials can be
considered to be homogeneous. Composite materials are not isotropic either
since they are usually stiffer and stronger in the fiber direction than in the
transverse direction.

Another important concept in discussing the behavior of materials is whether
or not the material is elastic. A material is elastic if it recovers it original length
after being unloaded. Plotting the applied force versus the elongation or stress
versus strain, a certain path is followed during the loading process and the same
path is followed in reverse during the unloading. If for a material the unloading
follows a different path, the material is said to be inelastic this can be due to
strain rate effects (viscoelasticity), the introduction of permanent deformations
(plasticity) or both. A material is said to be linear if the stress-strain curves are
straight or, in other words, stress is proportional to strain. It should be pointed
out that a material can be elastic without being linear which is the case for
rubber.

In the following, we will first discuss the stress-strain behavior for an
isotropic material and introduce different concepts such as Hooke’s law and
material properties such as the modulus of elasticity, Poisson’s ratio and the
shear modulus. The more general case of an orthotropic material is considered
next.

3.1- Hooke's Law

For isotropic materials, most of the information needed to characterize the
mechanical behavior of the material can be obtained from a tensile test. For such
a uniaxial loading, a normal stress produces an elongation in the direction of the
applied stress and a contraction in the transverse direction but no shear deforma-
tion. The normal stress G is directly proportional to €, the normal strain in that
direction

o=Ee (11)
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for what are called linear elastic solids. Eqn. (11) is called Hooke's law and the
proportionality constant E is the modulus of elasticity or Young's modulus of the
material.

3.2- Poisson's Ratio

Under a uniaxial normal stress in the x direction for example, the material
contracts in the transverse direction (y or z direction) and the ratio between the
transverse and normal strains

v=-¢ /g, (12)

is a constant and a property of the material. This ratio is called Poisson's ratio.
Note that when € >0 in a tensile test, €,<0 and the negative sign in

Equation 12 is introduced so that v>0. Since the material is isotropic,
v=-¢,/e  also.

3.3- Stress-Strain Relation in Shear

When the material is subjected to shear the shear stress is directly
proportional to the shear strain so, for example,

. =Ge (13)

Xy Xy

where G is the shear modulus. It can be shown that, for isotropic materials, the
shear modulus is related to the modulus of elasticity and Poisson’s ratio by

G= (14)

Therefore, only two independent constants are needed to characterize the elastic
behavior of the material. Some authors give E and G while others provide E and
V.

3.4- Stress-Strain Relations for an Orthotropic Solid

Composite materials are heterogeneous on a microscopic scale which can be
defined by the diameter of a fiber: typically 10 um . However, the analysis of a

structure takes place on a much larger scale where dimensions are measured in
millimeters. On such a macroscopic scale it is possible to consider the heteroge-
neous mixture of fibers and matrix materials as a homogeneous material with
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different properties in different directions. Considering a rectangular block of
fiber reinforced material with fibers oriented in the x; direction and subjected to
a normal stress oy, (Figure 7). The elongation of a line segment in the X

direction such as AB will define the strain €, and according to Hooke's law,

o, =Egy (15)

X

<

A\

Figure 7. Orthotropic material subjected to tension in the fiber direction

The strains in the x, and x; directions determine the changes in length of the line
segments AC and DE respectively. We define two Poisson's ratios

€x €33
Vip=— Viy=——"- (16)
€ &l

so that

Oy O
€n ="V and €3 =—Vp3 E (17)
E, 1

Note that v, was defined for the case when the load was applied in direction
1 and the transverse direction was direction 2. Similarly, for v,; the load was
applied in direction 1 and the transverse direction that was considered was
direction 3. The first index is the direction in which the load is applied and the
second index designates the transverse direction.

For the same orthotropic block, applying ©,, alone will produce strains
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G22 o 2

€,=—22 g, =-V, —= €, =—V,, —2 18
22 E2 11 21 E2 33 23 E2 ( )
Similarly, applying ©,; alone will produce
c o
0y, =E&y,,  €,=-Vv, =2, g,=-V,—> 19
33 3%33 11 31 E3 22 32 E3 ( )

Combining the effects of these three normal stress components we have

L Vo Vi
€ E' Elz E3 Oy
— Vi —Vy
€n (= - = 1% (20)
e El Ez Ez o
3 Vis ~Va 1 .
| E, E, E, |

In those equations, six Poisson’s ratios have been introduced. It can be shown
that the compliance matrix in Equation (20) must be symmetric so that

@n
E,"E, E, E, E

V21 V12 V23 V32 V31 — V13
EZ 1

and the number of independent Poisson’s ratios is reduced to three. In shear, the
stress-strain relations are

6, =G€,, 013 =G 585, Oy =Gpey (22)

where three independent shear moduli are introduced. The elastic behavior of
orthotropic materials is characterized by 9 elastic constants: E,,E,,E;,v,,,V,s,

V13,Gyy,G5,Gy; . Combining Equations 20 and 22, the constitutive equations
for an orthotropic material can be written as
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L —Vy Vi 0 0 0
E] EZ E3
~Vi 1 —Vx»
— —= 0 0 0
€ E, E, E, On
€ —Vi3 —Vy 1 0 0 0 On
&3 _| E E, E, SES (23)
€3 0 0 0 1 0 0 |/G2
€3 Ga O3
€n 0 0 0 0 L 0 [(Op
Gis
0 0 0 0 0 L
L GIZ
and, for an isotropic material,
Ly _
2 VYV 9 0 o
E E E
_ 1 -
o
Eyy -v -v 1 Oy
e — — = 0 0 0]|¢s
z( _ E E E . 7z (24)
2 o 0 0o = o o0|%
8ZX G 1 GZX
€y 0 0 0 0 E 0 c,
1
0 0 0 0 0 —
L G

The usual convention for unidirectional composites is to take the x; axis in the
fiber direction, the x, axis in the plane of the lamina, and x3 to be perpendicular
to that plane. This is called a material principal coordinate system and, in that
system, normal stresses produce linear strains but no shear deformations.
Similarly, shear stresses produce shear strains but no linear strains.

3.5- Stress-Strain Relations for a Lamina under Plane Stress

Consider a thin lamina of orthotropic material in material principal coordina-
tes. If the top and bottom surfaces are stress free and the thickness is small, it
may be assumed that the stress components G;,05,,0;, are negligible. The
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lamina is then in a state of plane stress and, for inplane loading, the constitutive
equations are

L “Vu 0
€ E, Eiz O
—Vip

En = = 0 (53 (25)
€ E E, o

12 1 12

0 -
L G12 i

Inverting this relationship gives

Oy Q, Q, 0 |lg,
6, =(Qn Qy 0 &y (26)
Oy 0 0 Qg len

where the reduced stiffness constants are

E, _ E, _ VpE,

22 12

Q=

_—’
1=V, vy

= 1 » Qe =Gy,
~ ViV

1=vj vy
In this coordinate system, extension and shear deformations are uncoupled as
indicated by the zeroes in the matrix [Q]. Applying any combination of stresses
o, and o©,, will produce linear strains €, and €, but no shear strain.

Similarly, a shear stress ¢,, will induce a shear strain but no linear strain. The

behavior of such a layer is governed by four independent constants
(EI’EZ’V12’G12) .

3.6- Coordinate Transformation

Composite structures often consist of a laminate with many layers oriented in
different directions. For each layer, the constitutive equations can be written in a
local coordinate system but then it is necessary to use one global coordinate
system for all the layers. The stress components acting on a surface with any
orientation can be found using a coordinate transformation law. If the three

stress components in the xy coordinate system (o, .0, ,and G, ) are known, the

stresses in any coordinate system x'y' oriented at an angle 6 (Figure 8) are given
by
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2 2

O, ¢ s 2cs ||o,
_ 2 2 _
G, (=| s c 2¢s O, 27)
2 2
O, —cs ¢s ¢ -8 "
where ¢=cos0, s=sin.
1
y A
y
Xl
e X
L X

Figure 8. Coordinate transformation in the plane of a lamina
The stresses in the new coordinate system are related to the stresses in the old
coordinate system by

{o’}=[T]{c} (28)

where [T] is the coordinate transformation matrix. The displacements in the new
coordinate system are related to those in the old system by

u'=u cos®+vsin®, v =-u sin®+vcos 0 (29)
The strains in the new coordinate system are

. =au’:a_u' ax+8u' oy
“9x’ 9x 9x’ dy 9x

ov' _dv 8x+av ady.

8yy:i)y’ ox 0y 8_y8y'

(30)
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du” dv' _Jdu 8X+8u dy dv ax+8v oy

SX'Y':ay’ o0x’ 9x 9y dy 9y dx 9x Wax'

The coordinates in the new and old systems are related by
x=x"cos0-y sin@, y=x"sin0+y cos 0 3D

Then, the relationships between the strain components in the new coordinate
system and the strain components in the old system are

Evv = Ex-COs Ot g, .s5in° O+sind cosO g,
€y = Eu-sin" O+, .cos’O+sinBcosO g, (32)
Evy=- £...25In0 cosO+g, .2 cosB sinO+(cos’ O - sin’ 0) g,

These strain transformation equations (Egs. 32) can be written in matrix form as

Eav ¢ 5 2sc Ean
Eyy = sz CZ 2 SC Eyy (33)
g /2] |-sc sc (c’-8) || e,/2

or, in short hand notation,

€} =[T]{e} (34)

where the transformation matrix T is the same matrix used for stress transforma-
tions (Equation 28). Eqns. (33) show that, in two-dimensions, three strain
components are sufficient to define the state of deformation at one point. The
strain in any other direction can be found using the transformation equations.

In a laminate, the material principal directions for a given layer are oriented
at an angle 0 from the global coordinate system xy (Figure 9). The stress-strain
relations in the material principal coordinates (Equation 26) can be written as



Introduction to the Mechanics of Composite Materials 17

¢ s 2s |lo,] [Q, Q, O] ¢ s 2 |le,
s ¢®  —2cs 6,=1Q, Qp 0 s ¢ —2cs €,
—cs cs ¢’ -5’ |0, 0 0 Qg—2cs 2cs c¢*—s’|lg,
or,
O ¢ s -2s|[Q, Q, 0 ¢ s 2cs o
o, r=|s* ¢’ 2cs ||Q, Qp O s & —2cs Re,p (35)
o, s —cs ¢’—=s’|| 0 0 Qgl—2cs 2cs c’-s’|le

Xy

x;\
X

Figure 9. Material principal coordinates for an orthotropic lamina with fibers oriented at
an angle O from an arbitrary coordinate system xy.

Finally, the constitutive equations for a single orthotropic layer are oriented at an
angle 6 from the x-axis can be written as

o. Qi Q. Qlle.
6,=|Q, Q. Qlie, (36)
o,] Q¢ Qs Qule,

where

6]1 = ()]lc4 + 2(Q]2 + 2Q66 )CZSZ + QZZS4 >
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Q. =(Q, +Q, —4Q,)c’s* +Q,,(c" +5')

Q,, =Q,¢" +2(Q,, +2Q,,)c’s +Q, 8",
Q,=Q,¢s—(Q, +2Q,)(c* ~s*)es - Q, s'c
Q. =-Quc's+(Q, +2Q,)(c ~s*)es +Q, s'c,

666 = (Qll + sz —4Q66)CZSZ + Qas (cz —s’ )2

with ¢ =cos(0) and s =sin(0). When the coordinate system is not oriented in

the material principal direction (9 #0 or 90°), the Q, and Q,, terms are not

zero and there will be coupling between the extension and shear deformations.
A normal stress will produce linear strains and a shear strain. Similarly a shear
stress will produce both extensions and shear deformations.

4- Failure Criteria for Composite Materials

Under some given loads, the analysis of a composite structure determines
stresses and strains that satisfy the equations of motion and the constitutive
equations. It is also important to determine whether or not the structure will fail.
In a composite structure, failure can occur inside a ply or at interfaces between
plies. Many failure criteria have been proposed for predicting failure of
composites and this section will describe some of the most commonly used
criteria. A common feature to all the criteria described here is that there are
based on the composite stresses (or strains). That is on the stresses calculated
assuming that each ply is a homogeneous orthotropic solid as opposed to
detailed stress distribution inside a fiber and the surrounding matrix.

First we examine criteria for predicting failure of the fibers, failure of the
matrix, or delamination failure. It is often thought that it is easier to develop
criteria for individual failure modes and that, when successful, they bring insight
into the behavior of the composite. Then, we discuss criteria capable of
predicting failure under any combination of stresses. The use of a single
criterion for predicting failure of a lamina is easier to implement but the
drawback is that, usually, they cannot predict the mode of failure. In each case
we introduce the various failure criteria in order of increasing complexity.

4.1- Criteria for Fiber Failure
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The simplest approach is to assume that fiber failure depends only on the
normal stress in the fiber direction and that failure occurs when the magnitude of
that stress exceeds a critical value. Following Hashin (1980), tensile fiber failure
is predicted using a maximum stress criterion

o,/X; =1 when ©,,>0 (37.2)

This criterion is used by Green et al (2000), Luo et al (1999, 2001), Foo et al
(2008) and Cesari et al (2007). Foo et al (2008) assumed that fiber compressive
failure occurs when

lo.|/ X, =1 when 6, <0 (37.b)

X is the strength of the composite in the fiber direction and X, is the strength
in compression and in general X <X, . Other researchers have proposed ways

to account for the effects of other stress components. Lee (1982) and Hatami-
Marbini and Pietruszczak (2007) use Equations 37 to predict tensile and
compressive fiber failure. In addition, fiber failure due to shear is predicted

using
2 2
G12 613
L2y =L =1 38
(Sl J (Sl J 9

where S is the shear strength in the plane perpendicular to the material principal
axis 1. This implies that the material is transversely isotropic and that the effect
of normal and shear stresses are independent.

Yamada and Sun (1978) and Sun and Yamada (1978) considered that the shear

stress ©,, also has an effect on fiber failure and used the quadratic criterion

) 2
Gl 012
L4 =2 =1 39
%)) o
where X =X, for 6,, >0 and X=X, for 6, <0. S, is the shear strength in the
plane of the lamina. In the G,,—0, plane, the failure curve consists of two half

ellipses: one for ¢, >0 and the other for 6, <0. The strength of a ply is not

the same when it is tested by itself compared with that of a ply inside a laminate.
Sun and Yamada (1978) noted that the in-situ shear strength in a laminate is
often two or three time higher than that measured on a single layer. Hou et al
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(2000) and Zhang (2002) used Equation 39 forc,, >0. Hou et al (2000) also
included the effect of the transverse shear stress G,, on the tensile fiber failure

2 2 2
(%j J{—G“ ; G”J >1 (40)
T f

Gomez del Rio et al (2005) used a slightly different version of Equation 40

2 2
S| 480 5y (41)
X, S,

Hashin’s fiber failure criteria where

2 2 2
Su | 48| 48| =1 when c, >0 (42)
X, S, S,

|o,,| =X when 6, <0 (43)

and

was used by Zhang et al (2002) and Li et al (2002). Zhang et al (2002) also
introduced a modified Hashin criterion by replacing stresses by strains in
Equations (42, 43).

4.2- Criteria for Matrix Failure
Like when the material is loaded in the fiber direction, failure under normal

stress in the transverse direction can be thought to depend only on the magnitude
of that stress ©,,. To predict the onset of matrix cracking, Li et al (2006) used

the maximum stress criterion
6,,/Y,=1 when ©,,>0 or [0,]/Y,=Iwhen o, <0 (44)

which accounts for the different strength in tension and compression when
loaded in the transverse direction but does not account for the effect of shear
stresses.  In addition to Equations 44, Lee (1982) and Hatami-Marbini and
Pietruszczak (2007) predicted matrix failure due to shear using
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2 2
612 613
L+ =1 45
where S, is the shear strength in the plane perpendicular to the material principal

axis 2. Equation 45 predicts failure due to shear stresses independently of the
normal componentG,, .

In a laminate, stresses inside a ply vary through the thickness. The criterion
proposed by Choi and Chang (1992)

N RN
nGZZ n623 2
—_— + | —== =¢c 46
( Y J [ 'S, J ! o
where "Y ="Y, if 6,20 and "Y ="Y, if 0,,<0 was used in several

publications (Her and Linag (2004), Krishnamurthy et al (2001), Mahanta et al
(2004), Pradhan and Kumar (2000), Rahul et al (2005, 2006), Zheng et al (2006)).
Overbars in Equation 46 indicate that the stresses are averaged through the
thickness of layer n. When G,, is plotted versus G,,this failure criterion is

represented by half of an ellipse when G, >0and another half ellipse when
G,, <0. This criterion accounts for interactions between the normal and shear

stress components in the yz plane.
Green et al [2] and Luo et al [3,4] assumed that matrix failure depends on the
three stress components G,,,0,,, andG,,

2 2 2
a1 %u| 4|22 21 when ©,20 (47)
YT SlZ SB
Green et al (2002) and Luo et al (2001) further assumed that S;,=S,;. Cesari et
al (2007) used this criterion to predict failure in tension. They also used it for
compression but with different strengths.

Green et al (2002), Luo et al (1999, 2001), Hou et al (2000), Zhang (2002),
Li et al (2002) and Gomez-del Rio et al (2005) assume that matrix cracking

occurs when
2 2
622 012
—== | +|—=] =1 when o, 20 48
(2] +(22] . ®)

or
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2 2
1{ oy n Yc(5222 “S2 1% | 51 when G, <0 (49)
4 S]2 4S|2 Y S]2

C
Sun et al (1996) proposed a criterion that accounts for the reduction in shear
strength when 6, <0

’ ? when ©,, <0
On | (1 _Se | with u= Ho 2 (50)
Y S—uo,, 0 when o0, >0

where Y=Y, for 6,, >0 and Y=Y, for 6,, <0.

Zhang et al (2002) and Kim et al (1997, 2007), Foo et al (2008) used
Hashin’s criteria for predicting matrix failure. Matrix tensile failure occurs when
(6, +064)>0 and

2 2 2 2
622 + 6‘43 GZ% _ 022613 G12 G13
2| = e e e L | 1
( Y S: S;, S, ©b
23 12 13

T

Similarly, compressive matrix failure is expected to occur when (G,, +6;)<0
and

2 2
G,, + 03 +(622+0-33) i -1 +G§3_—§52263’3+ 6—§2+6—§321 (52)
20, Yo o (L2, Sa 0 S S

Kim et al (1997, 2007) averaged the stress components though the thickness of
the layer in order to predict matrix failure (Equations 51, 52). They also
assumed that S;, = S»;.

4.3- Delamination Failure Criteria

Debonding between adjacent layers depends on the stresses acting on that inter-
face: the normal component 64, and the two shear stresses ¢,; and G,,. Lee
(1982), Zhang (2002), and Hatami-Marbini and Pietruszczak (2007) predicted
delamination using a maximum stress criterion for the normal stress and a
quadratic criterion for the two shear components
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2 2
6, /Y, =1 or [%j +(%] =1 (53)
3 3

where S; is the shear strength in the plane perpendicular to the material principal
axis 3. It is assumed that no failure occurs when 6;; <0. The criterion propo-

sed by Christensen and DeTeresa (2004) and mentioned by Cesari et al (2007)

2 2
(%j J{%J >1 (54)
Sl3 SZ3

allows for different strengths for ©,; and o©,; but does not account for

interactions between the normal and shear stresses acting at the interface.

Several criteria accounting for the interaction between the three stress
components acting at the interface have been introduced. Green et al (2000),
Luo et al (1999, 2001), Cesari et al (2007), Zhao and Cho (2004, 2007), Wagner
et al (2001), and Hou et al (2000, 2001), postulated that the onset of delamina-
tion is governed by

2 2 2
(&J +[&J +(%J >1  when 6y, >0 (55)
ZT Sl3 SZ3

Again, Green et al (2000) and Luo et al (2001), Wagner et al (2001), Hashin
(1982) assumed that S|, = Sy;. Cesari et al (2007) used the same criterion when
04, < 0 but with Z, instead of Zr in that case. The ellipsoid defined by Equation
55 accounts for the interaction between the three stress components acting at the

interface.
Her and Liang (2004), Kim et al [27, 28], Zhang et al (2002), Li (2002),

Gomez-del Rio et al (2005), Huang and Lee (2003), Lee and Huang (2003),
Fuoss et al (1998) use the delamination criterion proposed by Choi and Chang

(1992)
na 2 n+l — 2 n+16 2
z ze _ a2
Da [ HS}; J + ( n-%—lsi J + [ 11+1Yyy] _eD (56)

where ™Y ="y, if 6,20 and ™'Y =""Y_ if 6, <0. D, is a scaling

parameter and failure occurs when e, = 1. Note the similarity between Equations



24 S. Abrate

55 and 56. In the latter, stresses are averaged over the thickness of the layer
above the interface (layer n+1) and the strengths can be those of either the layer
above or the layer below (n).

The quadratic delamination criterion of Brewer and Lagace (1988) is similar
to Equations (55, 56) and can be written as

2 2 2
[&j +(&] {%j _) (57)
Z SI3 SZ3
where Z=7Z, when 65, >0 and Z=Z. when o, < 0. Naik et al (2000, 2001)

used Equation 57 and averaged the values of the stresses through the thickness of
the ply. Li et al (2008) used the Brewer-Lagace criterion as defined when
0, > 0 and omitted the effect of the transverse normal stress when ¢,; < 0. In

that case, we recover the criterion proposed by Yeh and Kim (2004) which
predicts that tensile delaminations occurs when 6, >0 and

2 2 2
Os + S + On >1 (58)
ZT Sl} SZ}

and shear delaminations occurs when 6., < 0 and

2 2
(&J +[%J >1 (59)
Sl3 SZ3
Equation 59 is identical to Equation 54, the criterion proposed by Christensen
and DeTeresa (2004). Huang and Lee (2003), Liu and Wang (2007) used Yeh’s
criterion (Equations 58, 59). Zhao and Cho (2007) used only the tensile part of
the criterion (Equation 58). The modified Yeh criteria (2004) was used by

Huang and Lee (2003) and Lee and Wang (2003). This criterion predicts a
tensile delamination mode when

2 2 2
€33 €3 €3
== 4| == 4| = 21 €,.>0 60
(Z?J (Slssj (SEJ (33 ) 0

and a shear delamination mode when
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2 2
813 823
— | =] =1 £,.,<0 61
(S%J (S§3J ( 33 ) ( )

Chen (2004) included the effect of the in-plane transverse stress G,,

n0 2 nGZ +n+102 n+16 2
3| 4D | —2=_28 4D, 2 | =e, (62)
Z. S Y

Hou et al (2000, 2001) assumed that delamination occurs when

2 ) 5
Oy +ﬁ¢ =1 when o, >0 (63)
ZT S]3 (dms dfs + 8)
or
2 2 2
05%9:78Y% _ 1 yhen —[(o%, +02)/8 <6, <0 (64)
Sl3 (dmsdfs + 8)

They also assumed that no delamination occurs when

6y, < (0% +0% )/8 (65)

In Egs. (63, 64), d,s is a damage coefficient of matrix cracking and dg is a
damage coefficient of fibre failure anddis the ratio between interlaminar
stresses before and after matrix or fiber failure.

Zou et al (2002-a,b) proposed a single criterion that accounts for different
strength for tension and compression in the transverse direction and for the effect
of the two transverse shear stresses

2 2 402 1 1
033 +013 2023 +| ——— oy, =1 (66)
ZZ. S Z, 7z

t c

Fenske and Vizzini (2001) extended the Brewer-Lagace criterion by including
the effects of inplane stresses.

These various criteria attempt to predict the onset of delamination at the
interface between two adjacent plies in terms of the stresses acting at that
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interface. It is important to remember that the behavior is very different depend-
ing on the sign of the transverse normal stress.

4.4- Stress Invariants

Many yield or failure criteria are expressed in terms of invariants of the stress
tensor, invariants of the deviatoric stress tensor, or in terms of mean stress and
equivalent stress. These quantities are recalled here for future reference. The
state of stress at one point is defined be the stress tensor [G] and its six compo-

nents. The surface tractions acting on a surface oriented by a vector {n} are
given by {t }: [G]{n } The principal stress directions are such that only normal

stresses are acting on the surfaces oriented in those directions. In other words,
the vector {t } acts in the normal direction or

{t}=2{n} (67)
where the scalar quantity A is called the principal stress. Equation 67 can be

T lneadn} o (lAl])n =0 -

where [I] is the 3x3 identity matrix. Solving this eigenvalue problem (Equation
68) means finding values of the principal stresses A and the corresponding
vectors {n} that satisfy Equation 68. Non-trivial solutions occur when

‘ [Gij]—?u[l] ‘ = 0 which leads to the cubic algebraic equation

3 2
-+ +LA+L =0 (69)
where
I, =06, +0,+0,,,
I, =62, +062, +62, -6,.6,,—~G,0, —G.. 0 (70)
2 Xy XZ yz XX T yy yy© zz yy < zz
and
— 2 2 2
13 - Gxxcyyczz + 2ny6yzczx _Gzzcxy _nycxz _Gxxcyz

The state of stress at a point being independent of the coordinate system used to
describe it, the principal stresses must be independent of the coordinate system.
That means that the coefficients I;-I; in Equation 69 must remain constant under
coordinate transformation. For this reason, I;-I; are called the invariants of the
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stress tensor. Solving Equation 69 gives the values of the three principal stresses
and substituting into Equation 68, one can find the principal directions. These
principal directions and principal stresses are important because they give the
lowest and the highest normal stresses acting at that point and they are often used to
define failure criteria. The mean stress or hydrostatic pressure is usually defined as

.=1/3=(0, +0,+0,)/3 (71)

Both I, and o, are used in the development of many yield or failure criteria.
The deviatoric stress tensor is defined as

Si1 Si2 Sz ((511 _Gm) G, O3
[sg ] =Sy Syp Sy |= Gy (Gzz - Gm) (SPF (72)
831 83 Sz Gy G3 (633 -0, )

The eigenvalue problem‘ [sij ]— k[I] ‘ =0 leads to

3 2 _
“X+IX +LA+T,=0 (73)
where
T, =5, +S,,+S,,,
J, =5 , T s2 +s =SSy ~S4yS,, TSy S, (74)
and
2 2 2
J Sxxsyyszz + 2Sxysyzszx - Szzsxy - Syysxz - Sxxsyz

Using the definitions of sy, sy, and s;; (Equation 72), it is easy to show that the
first invariant of the deviatoric stress tensor is zero (J;=0). J, can be rewritten as

J, =5 +s +s , 8,8, +8,8,, 5.8, +s: +s +s (75)

or in tensor notation, J, =s;s, . In terms of stress components, the second inva-

riant is written as

yy o~ zz u XX

1
Jzzg{cix+0jy+ciz—c G,—G,0 }+0 +o,, +0, (76
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Alternatively, the second invariant J, can be expressed as
L=Ylo.-0,P4(o, -0, 4lo,-0.) e rornat ()
or, in terms of principal stresses,
={lo,-0.) 2 '}
2_g 01_02) +(02_03) +(03_01) (78)

The equivalent stress, or von Mises stress, is defined as

cc=x/§=\/§[(ol—cz)2+(oz—cs)2+(cz—cl)2] (79)

and the octahedral shear stress is defined as

o= = e e v o) +lo, o ) (80)

The second invariant of the deviatoric stress tensor J,, the equivalent stress G,

and the octahedral stress T, are used in the development of many yield or
failure criteria.

4.5- Strain Energy Density for Isotropic Solids

This section recalls that, for isotropic solids, the strain energy density
depends exclusively on I, the first invariant of the stress tensor and J,, the
second invariant of the deviatoric stress tensor. For isotropic solids, the stress-
strain relations (Equations 24) can be used to write the strain energy density

1
U= Ecijeij as

_1 1—2\/Iz

Rl U= 2E[c +pc? ] 81)
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3B B = 9(1-2v)
2(1+v) 2(1+v)
sents the distortional strain energy and the second term is the strain energy
corresponding to the hydrostatic loading. This result explains why, as we shall
see, many yield criteria for isotropic materials are written in terms the two
invariants Iy and I, or, equivalently, in terms of the equivalent stress and the
mean stress ¢, and the mean stress G, .

where E = . The first term in Equation (81) repre-

4.6- Von Mises Criterion

The fact that the strain energy density depends on I; and J, lead to the
development of a number of failure or yield criteria based on stress invariants.
Experiments conducted by Bridgman (1947) showed that, for metals, yielding is
independent of the hydrostatic pressure. Therefore, a number of criteria written
in terms of stress invariants are independent of I;. The von Mises yield criterion
in terms of the second invariant of the deviatoric stress tensor is

1
J,=50% =k (82)

where ©y;is the yield strength in tension and k is the yield in pure shear.

Therefore, yielding occurs when J, reaches a critical value. Recalling Equation
79, the definition of the equivalent stress ¢, , the Von Mises criterion states that

yielding occurs when G, reaches the value of the yield strength in tension. With

this criterion the strength in tension and compression are equal. For the biaxial
loading case, in terms of the principal stresses,

6, —0,6,+0; =0yp (83)

The yield curve in the 6, —0, plane is an ellipse centered at the origin with its
major axis orientted at 45° from the G, axis and the lengths of the semi-axes are
a= GYT\/E and b=06y;v2/3. Inthe o, -0, plane, the Von Mises criterion

represented by the horizontal lines 6, =+6,./3. The Von Mises criterion can
also be written in terms of principal stresses as

{[(61—62)24-(02—03)2+(G3—Gl)2]/2}]/2=GY (84)
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or, in terms of the regular stress components, as

2

Alo.-0,) 46, -0+, ~0.) Jroi +02 400 =% (89

These forms of von Mises’ criterion (Eqgs. 84, 85) are given for comparison with
criteria used for anisotropic materials.

4.7- Hill’s anisotropic criterion and extensions

In 1948, Hill proposed a criterion capable of accounting for anisotropic behavior
that can be seen as a generalization of the von Mises criterion to account for the
effect of orthotropy. This criterion was developed for metals such as aluminum
that were subjected to rolling operations and became orthotropic. We will show
that it is inadequate for modeling foams and other materials for which the effects
of hydrostatic pressure are significant and that have different behavior in tension
and compression. An extension to this criterion that addresses these deficiencies
is discussed next. The well-known Hill criterion (1948, 1950) is written as

H(s, -0,) +F(6, -0, ) +G(o, —0,) +2Lc%, +2Mo?, +2No?, =1 (86)

The similarity with von Mises’ criterion is obvious when comparing with
Equation 85. The coefficients H-N are introduced to account for the orthotropy
of the material. Ifc,,,0,,and o, are the yield strengths in the principal

directions of anisotropy, the strength parameters in Equation 86 are

S I T R | O B &
2 Gy Gy Gy 2 Gy (O (PR
H=l 12+12_12 ,L= 12:M= lz’Nz 12
2 G (S PN Gy 2(123) 2(’521) 2(1:152)

where T;,,75,, and T3 are the yield stresses with respect to the axes of
anisotropy. Hill’s anisotropic criterion (Equation 86) does not include the effect
of hydrostatic pressure. This can easily be seen by adding a pressure p to &,,,
0,, and ©,; and substituting into Equation (86) where the term p will then drop
out thus proving that point. The strength parameters F, G and H are based on
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tensile strengths only and Equation 87 predicts equal strengths in tension and
compression. Therefore, while capable of accounting for orthotropy, Hill’s
criterion (Equation 86) is inadequate for modeling foams because it does not
address the other two complicating factors discussed here.

The von Mises criterion is inspired by the form of the strain energy density of
isotropic solids. Similarly, Hill’s criterion bears a similarity with the strain energy
density in orthotropic solids. With stress strain relations given by Equations 24, the
strain energy density can be written as

2 2 2

o, 0, O v v v
2U = E—“+—E22 +—E33 - ZE—”G“GZZ - ZE—”(511(533 -2—-*0,0,,
1 2 3 1 1 2 (88)
2 2, 2
+—G c’, +—G o, +—0,,

23 31 12

The similarity between the strain energy density (Equation 88) and Hill’s
criterion (Equation 86) is obvious. As we shall see later, a number of authors
use this analogy between the strain energy density, written as

UZ%{G}T[S]{G}, to define an equivalent stress of the form

o ={G}T [P ]{G}. [P] being a matrix of the same form as the compliance

matrix [S].
Caddell, Raghava and Atkins (1973) proposed a modified Hill criterion for
polymers where

H(Gn —0, )2 + F(Gzz -0y )2 + G(G33 -0, )2 + ZLG; + 2MG§1 + 2N6122
(89)
+K,0,, +K,0,, +K,0,, =1

The last three terms on the left hand side of Equation (89) have been added in order
to account for differences in yield strengths in tension and compression. Both
Raghava and Caddell (1974) and Caddell and Kim (1981) used Equation 89 to
model the yield strength of anisotropic polycarbonate.

4.8- Development of Quadratic Criteria

To better understand the similarities between the quadratic failure criteria
that have been proposed by various authors and that are widely used, the
following presents a step by step development of such a criterion. In a case
where the loading consists of two stress components ¢, and o, , for example, we

start with the simple expression
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Ac;+Bo. =1 (90)

which is the equation for an ellipse in the 6,—0, plane with major axes in the

o, and o, directions. With this expression the strength in tension and

compression are the same and A =1/X* and B=1/Y* where X and Y are the
strengths in directions 1 and 2. Often the failure locus is an ellipse with major
axes at an angle from the 6, and o, directions. Adding an additional term to

Equation 90, the criterion
Ac’+Bo:+Co,0, =1 91)

represents an ellipse with a major axis at an angle ® from the ¢, axis. That angle
is given by
C

tan20 = —— 92
B (92)

When A=B, 6 = 45° and the ratio C/A controls the ratio of the major and minor
axes. For uniaxial tests in direction 1, Equation 91 predicts the same strength X
in tension and compression. Similarly, in direction 2, the strength Y is the same
in tension and compression. Then, A=1/X* and B=1/Y”. With composite
materials, tensile and compressive strength are very different. Therefore, the
criterion has to allow for cases where X, the strength in tension, is different from
X,, the strength in compression. Adding linear terms to the previous equation
gives

Ac; +Bo,+Co,0,+Do, +Eo, =1 (93)
Under uniaxial tension and compression in direction 1, this criterion gives
AX?+DX,=1 and AX!-DX_ =1 (94)

respectively. Solving these two equations, we find the constants A and D

A=—), D=—-— 95)
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Similarly, from the uniaxial strengths in direction 2, we find the constants B and
E

B= ! , E:L_L (96)
Y,Y, X, X

tce

The constant C must be determined from biaxial tests. When introducing a shear
stress component G, , simply add a 67, term. No ©,, term is required since the

shear strength S is the same for positive and negative shear stresses. Then, the
criterion becomes

2 2 2
LJanLC01c$2+ 11 c, + 1t 02+G—‘j=1 o7
XX, Y X, X Y Y S

t ¢ t c t c

Extending this approach to three dimensions, we can add ©:, 6,0,, 0,0,

and o, terms to account for the third normal stress components and its inter-

action with the first two. o7, and 65, must also be added to account for the

additional shear stress components. This leads to the three- dimensional Tsai-
Wau criterion discussed below.

4.9- Three Dimensional Tsai-Wu Failure Criterion

The approach discussed in the previous section can be generalized to three
dimensional loading of a unidirectional composite. In that case, we have six
stress components: three normal stresses ©,,, G,,, and ¢,,, and three shear

stresses O, 0,;,and 6,,. For the normal stresses, the criterion should include
three linear terms (o, 6,,, and 6, ), three square terms (67, 62, and 2, ),
and three interaction terms (6,6,,, 6,0, and 6,,6,,). For the shear stresses,

only the square terms are needed. Then, we obtain what is called the Tsai-Wu
failure criterion

2 2 2 2 2
Flcll + FZGZZ + F3633 + Fll Gll +F22 622 + F33 633 +F44 623 +E5 G13 (98)
2 —
+F66 G12 + 2E2 G11022 + 2F13 G11033 +2F23 G22033 _1

that contains 12 coefficients. Nine of the coefficients can be determined from
unidirectional tests



34 S. Abrate

pol g1 1
X( X(, Y( YC Z( ZC
1 1 1
E, :H’ E, :ﬁ’ E, :E’ (99)
1 1 1
F44=S_§37 55=S_]23’ 44=§

The three coefficients Fy,, Fy3, and F,; can have a significant effect on the shape
of the failure surface and they are best determined through biaxial tests that are
difficult to perform. When this information is not available, one can use the fact

1 1
the three terms 5F110121+5F22 0, +2F,0,0,, form the perfect square

%( F, 6, —F, (5) if

1
E,= _E E.E, (100)
In addition, if we also take
1 1
F, :_E F E, and F, :—5 E,F, (101,102)

then, the criterion can be written as

1 | 2 1 2
5( F11 G, - Fzz 022) +E( F33 Gy — Fzz 622) +E(\}F11 G, — F33 633) (103)
+ Flcll + cmzz + F3033 + F44 623 + Fss 0123 +F6() 6122 =1

a form similar to the criterion proposed by Caddell et al (1973) (Equation 89).
Combining Equations (99-103) gives expressions that are used by many authors

Pt op-__ 1 p___ 1 (o

tTUa XYY, 7 2lvyzz U 2XXzz.

In the case of a transversely isotropic material where the 23 plane is the plane of
symmetry, the number of constants are reduced (1971) since F,=F;, F=Fs;,



