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Preface

Technological progress in the semiconductor industry has led to a revolution to-
wards new advanced, miniaturized, intelligent, battery-operated and wireless elec-
tronic applications. The base of this still ongoing revolution, commonly known as
Moore’s law, is the ability to manufacture ever decreasing transistor sizes onto a
CMOS chip. In other words, the transistor density increases, leading to larger quan-
tity of transistors which can be integrated onto the same single chip die area. As a
consequence, more functionality can be integrated onto a single chip die, leading
to Systems-on-Chip (SoC) and reducing the total system cost. Indeed, the cost of
electronic applications depends in a inverse-proportional fashion on the degree of
on-chip integration, which is the main drive for CMOS scaling.

A SoC requires both analog and digital circuitry to be combined in order for it to
be able to interact with the analog world. Nevertheless, it is usually processed in a
native digital CMOS technology. These CMOS technologies are optimized for the
integration of large-scale digital circuits, using very small transistors and low power
supply voltages to reduce the power consumption. Beside for the purpose of decreas-
ing the (dynamic) power consumption, the power supply voltage of deep-submicron
CMOS technologies is also limited due to the physically very thin gate-oxide of the
transistors. This thin gate-oxide, of which the thickness may merely be a few atom
layers, would otherwise suffer electrical breakdown. However, the analog circuitry
generally needs higher power supply voltages, compared to the digital circuitry. For
instance, a power amplifier needs a higher supply voltage to deliver sufficient power
into the communication medium. Also, analog signal processing blocks require a
higher supply voltage to achieve the desired Signal-to-Noise-Ratio (SNR).

Due to the trend towards electronic applications of portable and wireless nature,
(rechargeable) batteries are mandatory to provide the required energy. Although also
prone to innovation and improvement, the battery voltage does not scale with the
CMOS technology power supply voltages. Obviously, this is due to their physical
and chemical constraints. Moreover, their energy density remains limited, limiting
the available power and/or the autonomy of the application. Therefore, it is clear
that power-management on a SoC-scale is mandatory for ensuring the ongoing fea-
sibility of these applications.
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Matching the battery voltage to the required power supply voltage(s) of the SoC
can essentially be done in two ways. The first method, which can only be used when
the battery voltage is higher than the required power supply voltage(s), is the use
of linear voltage converters. This method is very often applied in current state-of-
the-art applications, due to the simplicity to integrated it onto the SoC and its low
associated cost. However, the excess energy from the battery voltage is dissipated
in the form of waste heat, negatively influencing the autonomy and/or physical size
of the application. The second method, putting no constraints to the battery volt-
age, is the use of switched-mode Direct-Current to Direct-Current (DC-DC) voltage
converters. These converters are able to increase or decrease the battery voltage
in a power-efficient fashion, leading to potentially higher battery autonomies. As
a drawback, these switched-mode DC-DC converters are more complex and diffi-
cult to integrate onto the SoC, which is why they still require off-chip electronic
components, such as inductors and capacitors.

The focus of the presented work is to integrate the switched-mode DC-DC con-
verters onto the SoC, thus reducing both the number of external components and the
Printed Circuit Board (PCB) footprint area. However, the poor electrical properties
(low Q-factors) of on-chip inductors and capacitors and their low associated values
(nH, nF) poses many difficulties, potentially compromising the power conversion
efficiency advantage. Combing both the concepts of monolithic SoC integration and
achieving a maximal (overall) power conversion efficiency, is the key to success.
Moreover, to minimize the costs, the power density of the fully-integrated DC-DC
converter is to be maximized.

To achieve these goals a firm theoretical base on the matter of DC-DC conversion
is provided, leading to the optimal inductive DC-DC converter topology choices.
An extensive mathematical steady-state model is deduced, in order to accurately
predict both the trade-offs and performance limits of the inductive DC-DC convert-
ers. A further increase the performance of DC-DC converters is achieved through
the design of novel control techniques, which are particularly optimized for high-
frequency monolithic inductive DC-DC converters. Finally, the theory and simula-
tions are verified and validated through the realization of seven monolithic inductive
CMOS DC-DC converters. As such, the highest power density and Efficiency En-
hancement Factor (EEF) over a linear voltage converter are obtained, in addition to
the feasibility proofing of various novel concepts.

The authors also wish to express their gratitude to all persons who have con-
tributed to this scientific research and the resulting book. We would like to thank
Prof. R. Puers and Prof. W. Dehaene for their useful comments. In addition we
would like to thank the colleagues of the ESAT-MICAS laboratories of K.U. Leu-
ven for both the direct and indirect contributions to the presented work. Finally, we
thank our families for their unconditional support and patience.

Mike Wens
Michiel Steyaert

Leuven
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Pin_SW Input power of switched-mode DC-DC voltage converter
PL_Csub Parasitic substrate capacitance power loss of an inductor
Pout Output power
P ′

out Real output power
Pout_lin Output power of a linear DC-DC voltage converter
Pout_max Maximal output power
Pout_SW Output power of a switched-mode DC-DC voltage converter
PRcs Parasitic series resistance power loss
PRcp Parasitic parallel resistance power loss
PRin Power loss in Rin

PRon Power loss in Ron

PRout Power loss in Rout

PRsw1 Power loss in RSW1

Ptf _SW1 Fall-time power loss of SW1
Ptr_SW1 Rise-time power loss of SW1
Q Q-factor
Qd Charge in the drain
Qg Charge in the gate
Qs Charge in the source
Qin Stored charge
Qout Delivered charge
r Perpendicular cross-section radius a round conductor
R Resistance
Ra Equivalent resistance
Rb Equivalent resistance
Rbondwire Parasitic series resistance of a bondwire
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Rc Equivalent resistance
Rchannel� Square-resistance of the induced channel
RCdec Parasitic series resistance of Cdec

Rcont_f Parasitic series resistance of gate contacts
Rcont_ds Parasitic series resistance of drain/source contacts
RCp Parasitic parallel resistance of C

RCs Parasitic series resistance of C

Re Equivalent load resistance
Req Equivalent resistance
Rin Input resistance
Rin Parasitic series resistance of Uin

RL Load resistance
R′

L Real load resistance
Rleft Conductor series resistance, seen from the left
RLs Parasitic series resistance of L

RLs@T RLs at temperature T

RLs@T +�T RLs at temperature T + �T

Rline Line resistance
Rloss Additional loss resistance
Rn+� Square-resistance of n+-region
Ron On-resistance
Ron@T Ron at temperature T

Ron@T +�T Ron at temperature T + �T

Ron_n On-resistance of an n-MOSFET
Ron_p On-resistance of an p-MOSFET
Rout Parasitic output resistance
Rploy� Square-resistance of poly-silicon
Rright Conductor series resistance, seen from the right
Rsen Sense resistance
Rseries Variable series resistance of a series voltage converter
Rshunt Variable shunt resistance of a shunt voltage converter
RSW1 Parasitic series resistance of SW1
Rtrack Parasitic series resistance of a metal track
Rvia Parasitic via series resistance
Rvia_tot Total parasitic via series resistance
R0 Output resistance at f0
R� Square-resistance
s Laplace-transform operator
sin Sine
t Time
T Period
T Temperature
ta→b Time from point a to point b

ta→c Time from point a to point c

tb→c Time from point b to point c
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td Dead-time
tf Fall-time
tf _SW1 Fall-time SW1
tflank Mean rise/fall-time
ton On-time
toff Off-time
toff _real Real off-time
tox MOSFET gate-oxide thickness
tr Rise-time
tr/f Rise/fall-time
tr_SW1 Rise-time SW1
Tr Transformer
tSW Switching/Charging time
tzero1 Intersect time 1 with the X-axis
t1 Time 1
U Voltage
Ube Base-emitter voltage
Uce Collector-emitter voltage
UC_max Maximal voltage over C

UC_min Minimal voltage over C

uC(t) Voltage over C as a function of t

UC(T ) Voltage over C at the end of T

UC(0) Initial voltage over C

Udd Nominal technology supply voltage
UDf Diode forward voltage drop
Uds Drain-source voltage
Udsatp Drain-source saturation voltage of a p-MOSFET
Udsn Drain-source voltage of an n-MOSFET
Uerr Error-voltage
Ugb Gate-bulk voltage
Ug_od Gate-overdrive voltage
Ugs Gate-source voltage
Ugsn Gate-source voltage of an n-MOSFET
Uin Input voltage
U ′

in_max Maximum input voltage
U ′

in_min Minimum input voltage
Uin_peak Peak value of Uin

uL(t) Voltage over L as a function of t

UL1 Voltage 1 over L

Uoffset Offset voltage
Uout Output voltage
Uout Mean output voltage
Uout_max Maximal output voltage
Uout_min Minimal output voltage
Uout_RMS RMS output voltage
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U ′
out_RMS Real RMS output voltage

uout(t) Output voltage as a function of t

uout(x) Output voltage as a function of x

ûout(x) Output voltage amplitude as a function of x

ûout(θ) Output voltage amplitude as a function of θ

Uprim Voltage over the primary winding
Uout_ptp Peak-to-peak output voltage
uRa(t) Voltage over Ra as a function of t

uRb(t) Voltage over Rb as a function of t

uRc(t) Voltage over Rc as a function of t

uRCp(t) Voltage over RCp as a function of t

uRCs(t) Voltage over RCs as a function of t

Uref Reference voltage
uR(t) Voltage over R as a function of t

Usb Source-bulk voltage
Usen Sense voltage
Usec Voltage over the secondary winding
uSW Voltage over SW
USW3 Voltage over SW3
Utria Triangular waveform voltage
Vt Threshold voltage
Wdrain Drain-width
Wn Gate-width of an nMOSFET
Wp Gate-width of an pMOSFET
Wp_buff Wp of a buffer
Wsource Source-width
Wtrack Width of a metal track
x �Uout approximation variable
Zin Input impedance
Zk Impedance ratio
Zout Output impedance
Z1 Impedance 1
α Resistance temperature coefficient
α(Pout) Power activity probability distribution
δ Duty-cycle
δskin Skin-depth
�Iin Input current ripple
�IL Current ripple through L

�IL_tot Total current ripple through L

�IL_1 Current ripple through L1
�Pin Input power difference
�T Temperature difference
�U Voltage difference
�UC Voltage swing over a capacitor
�Uin Input voltage ripple
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�UL Voltage swing over an inductor
�Uout Output voltage ripple
�Uout(δ) Output voltage ripple as a function of δ

�Q Charge difference
�QSW Transferred charge in one switch cycle
�η Power conversion efficiency difference
ε Dielectric permittivity
ε0 Permittivity of vacuum
εr_ox Relative permittivity of an oxide
η Power conversion efficiency
ηC_charge Energy charging efficiency of C

ηC_charge(t) ηC_charge as a function of t

ηL_charge Energy charging efficiency of L

ηL_charge(t) ηL_charge as a function of t

ηRLC_charge(t) ηC_charge in an RLC-circuit as a function of t

ηlin Power conversion efficiency of a linear DC-DC voltage converter
ηsp_down Power conversion efficiency of a step-down charge-pump
ηsp_up Power conversion efficiency of a step-up charge-pump
ηSW Power conversion efficiency of a switched-mode DC-DC converter
ηSW_max Maximal ηSW

ηTr Power conversion efficiency of an ideal transformer
ηTr(t) ηTr as a function of t

η	1 Energy conversion efficiency of 	1

γ Thermal resistance
	1 Phase 1
κ CMOS technology scaling factor
λp Early voltage of a p-MOSFET
μn n-carrier mobility
μp p-carrier mobility
μ Magnetic Permeability
μr Relative permeability
π Circumference/diameter ratio of a circle: 3.141592654 . . .

ρ Resistivity
τC Time constant of an RC-circuit
τL Time constant of an RL-circuit
τLC Time constant of an RLC-circuit
τTr Time constant of the primary winding of a transformer
θ Phase difference
ωLC Angular frequency of an RLC-circuit
ϒ �Uout approximation function
#fingers Number of gate fingers of a MOS capacitor
#Cout_1 Total required C to implement Cout_1

#Cout_tot Total required C to implement Cout_tot

#seg Number of segments
#via Number of vias
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∞ Infinite
� Q.E.D.
✔ A benefit
✘ A drawback
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