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Preface

Technological progress in the semiconductor industry has led to a revolution to-
wards new advanced, miniaturized, intelligent, battery-operated and wireless elec-
tronic applications. The base of this still ongoing revolution, commonly known as
Moore’s law, is the ability to manufacture ever decreasing transistor sizes onto a
CMOS chip. In other words, the transistor density increases, leading to larger quan-
tity of transistors which can be integrated onto the same single chip die area. As a
consequence, more functionality can be integrated onto a single chip die, leading
to Systems-on-Chip (SoC) and reducing the total system cost. Indeed, the cost of
electronic applications depends in a inverse-proportional fashion on the degree of
on-chip integration, which is the main drive for CMOS scaling.

A SoC requires both analog and digital circuitry to be combined in order for it to
be able to interact with the analog world. Nevertheless, it is usually processed in a
native digital CMOS technology. These CMOS technologies are optimized for the
integration of large-scale digital circuits, using very small transistors and low power
supply voltages to reduce the power consumption. Beside for the purpose of decreas-
ing the (dynamic) power consumption, the power supply voltage of deep-submicron
CMOS technologies is also limited due to the physically very thin gate-oxide of the
transistors. This thin gate-oxide, of which the thickness may merely be a few atom
layers, would otherwise suffer electrical breakdown. However, the analog circuitry
generally needs higher power supply voltages, compared to the digital circuitry. For
instance, a power amplifier needs a higher supply voltage to deliver sufficient power
into the communication medium. Also, analog signal processing blocks require a
higher supply voltage to achieve the desired Signal-to-Noise-Ratio (SNR).

Due to the trend towards electronic applications of portable and wireless nature,
(rechargeable) batteries are mandatory to provide the required energy. Although also
prone to innovation and improvement, the battery voltage does not scale with the
CMOS technology power supply voltages. Obviously, this is due to their physical
and chemical constraints. Moreover, their energy density remains limited, limiting
the available power and/or the autonomy of the application. Therefore, it is clear
that power-management on a SoC-scale is mandatory for ensuring the ongoing fea-
sibility of these applications.

vii
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Matching the battery voltage to the required power supply voltage(s) of the SoC
can essentially be done in two ways. The first method, which can only be used when
the battery voltage is higher than the required power supply voltage(s), is the use
of linear voltage converters. This method is very often applied in current state-of-
the-art applications, due to the simplicity to integrated it onto the SoC and its low
associated cost. However, the excess energy from the battery voltage is dissipated
in the form of waste heat, negatively influencing the autonomy and/or physical size
of the application. The second method, putting no constraints to the battery volt-
age, is the use of switched-mode Direct-Current to Direct-Current (DC-DC) voltage
converters. These converters are able to increase or decrease the battery voltage
in a power-efficient fashion, leading to potentially higher battery autonomies. As
a drawback, these switched-mode DC-DC converters are more complex and diffi-
cult to integrate onto the SoC, which is why they still require off-chip electronic
components, such as inductors and capacitors.

The focus of the presented work is to integrate the switched-mode DC-DC con-
verters onto the SoC, thus reducing both the number of external components and the
Printed Circuit Board (PCB) footprint area. However, the poor electrical properties
(low Q-factors) of on-chip inductors and capacitors and their low associated values
(nH, nF) poses many difficulties, potentially compromising the power conversion
efficiency advantage. Combing both the concepts of monolithic SoC integration and
achieving a maximal (overall) power conversion efficiency, is the key to success.
Moreover, to minimize the costs, the power density of the fully-integrated DC-DC
converter is to be maximized.

To achieve these goals a firm theoretical base on the matter of DC-DC conversion
is provided, leading to the optimal inductive DC-DC converter topology choices.
An extensive mathematical steady-state model is deduced, in order to accurately
predict both the trade-offs and performance limits of the inductive DC-DC convert-
ers. A further increase the performance of DC-DC converters is achieved through
the design of novel control techniques, which are particularly optimized for high-
frequency monolithic inductive DC-DC converters. Finally, the theory and simula-
tions are verified and validated through the realization of seven monolithic inductive
CMOS DC-DC converters. As such, the highest power density and Efficiency En-
hancement Factor (EEF) over a linear voltage converter are obtained, in addition to
the feasibility proofing of various novel concepts.

The authors also wish to express their gratitude to all persons who have con-
tributed to this scientific research and the resulting book. We would like to thank
Prof. R. Puers and Prof. W. Dehaene for their useful comments. In addition we
would like to thank the colleagues of the ESAT-MICAS laboratories of K.U. Leu-
ven for both the direct and indirect contributions to the presented work. Finally, we
thank our families for their unconditional support and patience.

Leuven Mike Wens
Michiel Steyaert
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Voltage over L as a function of ¢
Voltage 1 over L
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Output voltage
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Uour (1) Output voltage as a function of ¢
Uour(X) Output voltage as a function of x
Uour (%) Output voltage amplitude as a function of x
Uour(0) Output voltage amplitude as a function of 6
Uprim Voltage over the primary winding
Uou_pip Peak-to-peak output voltage
URa(t) Voltage over R, as a function of ¢
uRp(t) Voltage over R;, as a function of ¢
Uge(t) Voltage over R, as a function of ¢
urcy(t) Voltage over R¢,, as a function of ¢
URrcs(t) Voltage over Rcy as a function of ¢
Urer Reference voltage

ug(t) Voltage over R as a function of ¢
U Source-bulk voltage

Usen Sense voltage

Usec Voltage over the secondary winding
usw Voltage over SW

Usw, Voltage over SW3

Utria Triangular waveform voltage

Vi Threshold voltage

Warain Drain-width

W, Gate-width of an nMOSFET

W, Gate-width of an pMOSFET
Wo_bu W, of a buffer

Wiource Source-width

Wirack Width of a metal track

X AU,y approximation variable

Zin Input impedance

Zk Impedance ratio

Zout Output impedance

VA Impedance 1

o Resistance temperature coefficient
o (Pyyr) Power activity probability distribution
8 Duty-cycle

Sskin Skin-depth

Al Input current ripple

Al Current ripple through L

Ay tor Total current ripple through L

Alj Current ripple through L

APy, Input power difference

AT Temperature difference

AU Voltage difference

AU¢ Voltage swing over a capacitor

AUjy Input voltage ripple
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A U()ut
AUgut (3)
AQ

AQsw

An

€

€0

€r_ox

n

NC_charge
NC_charge ()
NL_charge
NL_charge ()
NRLC_charge @)
Nlin
Nsp_down
Nsp_up

nsw
NSW_max
ntr

N1 (1)

N,

TLC
TTr

wrc

#fingers
#Cout_l
#Cour_ot
#seg
#via
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Voltage swing over an inductor

Output voltage ripple

Output voltage ripple as a function of §

Charge difference

Transferred charge in one switch cycle

Power conversion efficiency difference

Dielectric permittivity

Permittivity of vacuum

Relative permittivity of an oxide

Power conversion efficiency

Energy charging efficiency of C

NC_charge s a function of ¢

Energy charging efficiency of L

NL_charge as a function of ¢

NC_charge in an RLC-circuit as a function of ¢

Power conversion efficiency of a linear DC-DC voltage converter
Power conversion efficiency of a step-down charge-pump
Power conversion efficiency of a step-up charge-pump
Power conversion efficiency of a switched-mode DC-DC converter
Maximal ngw

Power conversion efficiency of an ideal transformer
N7y as a function of ¢

Energy conversion efficiency of @

Thermal resistance

Phase 1

CMOS technology scaling factor

Early voltage of a p-MOSFET

n-carrier mobility

p-carrier mobility

Magnetic Permeability

Relative permeability

Circumference/diameter ratio of a circle: 3.141592654 ...
Resistivity

Time constant of an RC-circuit

Time constant of an R L-circuit

Time constant of an RLC-circuit

Time constant of the primary winding of a transformer
Phase difference

Angular frequency of an RLC-circuit

AU,y approximation function

Number of gate fingers of a MOS capacitor

Total required C to implement Coy; 1

Total required C to implement Cous 0

Number of segments

Number of vias
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