ACSP • Analog Circuits And Signal Processing

Mike Wens
Michiel Steyaert

Design and Implementation of Fully-Integrated Inductive DC-DC Converters in Standard CMOS

Design and Implementation of Fully-Integrated Inductive DC-DC Converters in Standard CMOS

ANALOG CIRCUITS AND SIGNAL PROCESSING

Series Editors:
Mohammed Ismail. The Ohio State University
Mohamad Sawan. École Polytechnique de Montréal

Mike Wens • Michiel Steyaert

Design and Implementation of Fully-Integrated Inductive DC-DC Converters in Standard CMOS

Springer

Dr. Mike Wens
ESAT-MICAS
Dept. Elektrotechniek
K.U. Leuven

Room 91.22, Kasteelpark
Arenberg 10
Leuven B-3001
Belgium
Mike.Wens@esat.kuleuven.be

Series Editors:

Mohammed Ismail
205 Dreese Laboratory
Department of Electrical Engineering
The Ohio State University
2015 Neil Avenue
Columbus, OH 43210
USA

Prof. Dr. Michiel Steyaert
ESAT-MICAS
Dept. Elektrotechniek
K.U. Leuven

Kardinaal Mercierlaan 94
Heverlee B-3001
Belgium
michiel.steyaert@esat.kuleuven.ac.be

Mohamad Sawan
Electrical Engineering Department
École Polytechnique de Montréal
Montréal, QC
Canada

ISBN 978-94-007-1435-9 e-ISBN 978-94-007-1436-6
DOI 10.1007/978-94-007-1436-6
Springer Dordrecht Heidelberg London New York
Library of Congress Control Number: 2011928697
© Springer Science+Business Media B.V. 2011
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Cover design: VTeX UAB, Lithuania
Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)

To my wife Larissa and our daughter Anna

Preface

Technological progress in the semiconductor industry has led to a revolution towards new advanced, miniaturized, intelligent, battery-operated and wireless electronic applications. The base of this still ongoing revolution, commonly known as Moore's law, is the ability to manufacture ever decreasing transistor sizes onto a CMOS chip. In other words, the transistor density increases, leading to larger quantity of transistors which can be integrated onto the same single chip die area. As a consequence, more functionality can be integrated onto a single chip die, leading to Systems-on-Chip (SoC) and reducing the total system cost. Indeed, the cost of electronic applications depends in a inverse-proportional fashion on the degree of on-chip integration, which is the main drive for CMOS scaling.

A SoC requires both analog and digital circuitry to be combined in order for it to be able to interact with the analog world. Nevertheless, it is usually processed in a native digital CMOS technology. These CMOS technologies are optimized for the integration of large-scale digital circuits, using very small transistors and low power supply voltages to reduce the power consumption. Beside for the purpose of decreasing the (dynamic) power consumption, the power supply voltage of deep-submicron CMOS technologies is also limited due to the physically very thin gate-oxide of the transistors. This thin gate-oxide, of which the thickness may merely be a few atom layers, would otherwise suffer electrical breakdown. However, the analog circuitry generally needs higher power supply voltages, compared to the digital circuitry. For instance, a power amplifier needs a higher supply voltage to deliver sufficient power into the communication medium. Also, analog signal processing blocks require a higher supply voltage to achieve the desired Signal-to-Noise-Ratio (SNR).

Due to the trend towards electronic applications of portable and wireless nature, (rechargeable) batteries are mandatory to provide the required energy. Although also prone to innovation and improvement, the battery voltage does not scale with the CMOS technology power supply voltages. Obviously, this is due to their physical and chemical constraints. Moreover, their energy density remains limited, limiting the available power and/or the autonomy of the application. Therefore, it is clear that power-management on a SoC-scale is mandatory for ensuring the ongoing feasibility of these applications.

Matching the battery voltage to the required power supply voltage(s) of the SoC can essentially be done in two ways. The first method, which can only be used when the battery voltage is higher than the required power supply voltage(s), is the use of linear voltage converters. This method is very often applied in current state-of-the-art applications, due to the simplicity to integrated it onto the SoC and its low associated cost. However, the excess energy from the battery voltage is dissipated in the form of waste heat, negatively influencing the autonomy and/or physical size of the application. The second method, putting no constraints to the battery voltage, is the use of switched-mode Direct-Current to Direct-Current (DC-DC) voltage converters. These converters are able to increase or decrease the battery voltage in a power-efficient fashion, leading to potentially higher battery autonomies. As a drawback, these switched-mode DC-DC converters are more complex and difficult to integrate onto the SoC , which is why they still require off-chip electronic components, such as inductors and capacitors.

The focus of the presented work is to integrate the switched-mode DC-DC converters onto the SoC , thus reducing both the number of external components and the Printed Circuit Board (PCB) footprint area. However, the poor electrical properties (low Q-factors) of on-chip inductors and capacitors and their low associated values $(\mathrm{nH}, \mathrm{nF})$ poses many difficulties, potentially compromising the power conversion efficiency advantage. Combing both the concepts of monolithic SoC integration and achieving a maximal (overall) power conversion efficiency, is the key to success. Moreover, to minimize the costs, the power density of the fully-integrated DC-DC converter is to be maximized.

To achieve these goals a firm theoretical base on the matter of DC-DC conversion is provided, leading to the optimal inductive DC-DC converter topology choices. An extensive mathematical steady-state model is deduced, in order to accurately predict both the trade-offs and performance limits of the inductive DC-DC converters. A further increase the performance of DC-DC converters is achieved through the design of novel control techniques, which are particularly optimized for highfrequency monolithic inductive DC-DC converters. Finally, the theory and simulations are verified and validated through the realization of seven monolithic inductive CMOS DC-DC converters. As such, the highest power density and Efficiency Enhancement Factor (EEF) over a linear voltage converter are obtained, in addition to the feasibility proofing of various novel concepts.

The authors also wish to express their gratitude to all persons who have contributed to this scientific research and the resulting book. We would like to thank Prof. R. Puers and Prof. W. Dehaene for their useful comments. In addition we would like to thank the colleagues of the ESAT-MICAS laboratories of K.U. Leuven for both the direct and indirect contributions to the presented work. Finally, we thank our families for their unconditional support and patience.

Mike Wens
Michiel Steyaert

Contents

1 Introduction 1
1.1 The Origin of DC-DC Converters 2
1.1.1 Basic Considerations 2
1.1.2 Historical Notes 3
1.2 Low Power DC-DC Converter Applications 9
1.2.1 Mains-Operated 10
1.2.2 Battery-Operated 11
1.3 Monolithic DC-DC Converters: A Glimpse into the Future 14
1.3.1 CMOS Technology 15
1.3.2 The Challenges 20
1.4 Structural Outline 23
1.5 Conclusions 24
2 Basic DC-DC Converter Theory 27
2.1 Linear Voltage Converters 27
2.1.1 Series Converter 28
2.1.2 Shunt Converter 29
2.2 Charge-Pump DC-DC Converters 31
2.2.1 On Capacitors 32
2.2.2 Series-Parallel Step-Down Converter 34
2.2.3 Series-Parallel Step-Up Converter 38
2.3 Inductive Type DC-DC Converters 41
2.3.1 On Inductors 41
2.3.2 Inductors and Capacitors: The Combination 44
2.3.3 Reflections on Steady-State Calculation Methods 49
2.4 INTERMEZZO: The Efficiency Enhancement Factor 59
2.4.1 The Concept 59
2.4.2 Interpretations 61
2.5 Conclusions 62
3 Inductive DC-DC Converter Topologies 65
3.1 Step-Down Converters 65
3.1.1 Buck Converter 66
3.1.2 Bridge Converter 72
3.1.3 Three-Level Buck Converter 74
3.1.4 Buck 2 Converter 77
3.1.5 Watkins-Johnson Converter 79
3.1.6 Step-Down Converter Summary 81
3.2 Step-Up Converters 82
3.2.1 Boost Converter 84
3.2.2 Current-Fed Bridge Converter 85
3.2.3 Inverse Watkins-Johnson Converter 86
3.2.4 Step-Up Converter Summary 88
3.3 Step-Up/Down Converters 90
3.3.1 Buck-Boost Converter 91
3.3.2 Non-inverting Buck-Boost Converter 92
3.3.3 Ćuk Converter 93
3.3.4 SEPIC Converter 94
3.3.5 Zeta Converter 95
3.3.6 Step-Up/Down Converter Summary 97
3.4 Other Types of Inductive DC-DC Converters 99
3.4.1 Galvanic Separated Converters 99
3.4.2 Resonant DC-DC Converters 104
3.5 Topology Variations 107
3.5.1 Multi-phase DC-DC Converters 107
3.5.2 Single-Inductor Multiple-Output DC-DC Converters 115
3.5.3 On-Chip Topologies 118
3.6 Conclusions 121
4 A Mathematical Model: Boost and Buck Converter 123
4.1 Second-Order Model: Boost and Buck Converter 124
4.1.1 Differential Equations: Boost Converter 124
4.1.2 Calculating the Output Voltage: Boost Converter 126
4.1.3 Differential Equations: Buck Converter 131
4.1.4 Calculating the Output Voltage: Buck Converter 132
4.2 Non-ideal Converter Components Models 135
4.2.1 Inductor 136
4.2.2 Capacitor 142
4.2.3 Switches 146
4.2.4 Buffers 152
4.2.5 Interconnect 154
4.3 Temperature Effects 158
4.3.1 Inductor 159
4.3.2 Switches 159
4.4 The Final Model Flow 160
4.4.1 Inserting the Dynamic Losses 161
4.4.2 Inserting the Temperature Effects 163
4.4.3 Reflections on Design 164
4.5 Conclusions 167
5 Control Systems 169
5.1 Inductive Type Converter Control Strategies 170
5.1.1 Pulse Width Modulation 170
5.1.2 Pulse Frequency Modulation 175
5.1.3 Pulse Width Modulation vs. Pulse Frequency Modulation 176
5.2 Constant On/Off-Time: COOT 181
5.2.1 The COOT Concept 181
5.2.2 Single-Phase, Single-Output Implementations 184
5.2.3 Single-Phase, Two-Output SIMO Implementation 188
5.3 Semi-Constant On/Off-Time: SCOOT 193
5.3.1 The SCOOT Concept 193
5.3.2 Multi-phase Implementations 195
5.4 Feed-Forward Semi-Constant On/Off-Time: F^{2}-SCOOT 203
5.4.1 The F^{2}-SCOOT Concept 203
5.4.2 Single-Phase, Two-Output Implementation 205
5.5 Start-up 209
5.5.1 The Concept 210
5.5.2 Implementations 210
5.6 Conclusions 211
6 Implementations 213
6.1 Monolithic Converter Components 214
6.1.1 Inductor 214
6.1.2 Capacitor 216
6.1.3 Switches 220
6.2 On Measuring DC-DC Converters 224
6.2.1 Main Principles 224
6.2.2 Practical Example 226
6.3 Boost Converters 228
6.3.1 Bondwire, Single-Phase, Single-Output 228
6.3.2 Metal-Track, Single-Phase, Two-Output SIMO 232
6.4 Buck Converters 235
6.4.1 Bondwire, Single-Phase, Single-Output 236
6.4.2 Metal-Track, Single-Phase, Single-Output 240
6.4.3 Metal-Track, Four-Phase, Single Output 244
6.4.4 Metal-Track, Four-Phase, Two-Output SMOC 248
6.4.5 Bondwire, Single-Phase, Two-Output SMOC 250
6.5 Comparison to Other Work 254
6.5.1 Inductive Step-Up Converters 255
6.5.2 Inductive Step-Down Converters 256
6.6 Conclusions 259
7 General Conclusions 261
7.1 Conclusions 261
7.2 Remaining Challenges 263
References 265
Index 273

Abbreviations and Symbols

Abbreviations	
AC	Alternating-Current
AC-AC	Alternating-Current to Alternating-Current
AC-DC	Alternating-Current to Direct-Current
ADC	Analog-to-Digital Converter
BCM	Boundary Conduction Mode
BiCMOS	Bipolar Complementary Metal-Oxide Semiconductor
BJT	Bipolar Junction Transistor
BW	BandWidth
CB	Conduction Boundary
CFL	Compact Fluorescent Lamps
CM	Conduction Mode
CCM	Continuous Conduction Mode
CMOS	Complementary Metal-Oxide Semiconductor
COOT	Constant On/Off-Time
CRT	Cathode Ray Tube
DAC	Digital-to-Analog Converter
DC	Direct-Current
DC-AC	Direct-Current to Alternating-Current
DC-DC	Direct-Current to Direct-Current
DCM	Discontinuous Conduction Mode
DIL	Dual In Line
EEF	Efficiency Enhancement Factor
EMI	Electro Magnetic Interference
FAIMS	High-Field Asymmetric waveform Ion Mobility Spectrometry
FET	Field-Effect Transistor
ESI	Electro-Spray Ionization
ESL	Electric Series inductance
ESR	Electric Series Resistance
FOX	Field Oxide
F2 SCOOT	Feed-Forward Semi-Constant On/Off-Time

GBW	Gain BandWidth
GND	GrouND
HF	High Frequency
IC	Integrated Circuit
IGBT	Insulated Gate Bipolar Transistor
LDO	Low Drop-Out
LIDAR	Laser Imaging Detection And Ranging
LiION	Lithium-ION
ME1	Metal-1
MIM	Metal-Insulator-Metal
MOM	Metal-Oxide-Metal
MOS	Metal-Oxide Semiconductor
MOSFET	Metal-Oxide Semiconductor Field-Effect Transistor
n-MOSFET	n-channel Metal-Oxide Semiconductor Field-Effect Transistor
MS	Mass Spectrometry
MUX	Multi-PleXer
NPN	n-type p-type n-type transition
OPAMP	OPerational AMPlifier
OTA	Operational Transconductance Amplifier
OX1	Oxide-1
PC	Personal Computer
PCB	Printed Circuit Board
PFC	Power Factor Correction
PFM	Pulse Frequency Modulation
p-MOSFET	p-channel Metal-Oxide Semiconductor Field-Effect Transistor
PNP	p-type n-type p-type transition
PSRR	Power Supply Rejection Ratio
PTC	Positive temperature coefficient
PWM	Pulse Width Modulation
Q.E.D.	Quod Erat Demonstrandum
RC	Resistor-Capacitor
RF	Radio-Frequency
RL	Resistor-Inductor
RLC	Resistor-Inductor-Capacitor
RMS	Root-Mean-Square
SCOOT	Semi-Constant On/Off-Time
SEPIC	Single-Ended Primary-Inductance Converter
SiGe	Silicon-Germanium
SIMO	Single-Inductor Multiple-Output
SMOC	Series Multiple-Output Converter
SMOS	Type of healthy sandwich
SMPS	Switched-Mode Power Supply
SoC	System-on-Chip
SPICE	Simulation Program with Integrated Circuit Emphasis

SRR	Supply Rejection Ratio
SW	Switch
Symbols and Quantities	
A	Area
A_{C}	On-chip capacitor area
A_{C}^{+}	Positive charge balance area
A_{C}^{-}	Negative charge balance area
A_{L}	Perpendicular projected area of the inductor windings
A_{L}^{+}	Positive volt-second balance area
A_{L}^{-}	Negative volt-second balance area
arccos	Arc cosine
A_{\varnothing}	Perpendicular cross-sectional area
A_{\varnothing} _eff	Effective A_{\varnothing}
C	Capacitance
$C_{e q}$	Equivalent capacitance
cos	Cosine
$C_{d b}$	Parasitic drain-bulk capacitance
$C_{\text {dec }}$	Input decouple capacitance
$C_{g b}$	Parasitic gate-bulk capacitance
$C_{g d}$	Parasitic gate-drain capacitance
$C_{g c}$	Parasitic gate-source capacitance
$C_{g g}$	Parasitic gate capacitance
$C_{g _ \text {min }}$	Parasitic gate of a minimal size inverter
$C_{s b}$	Parasitic source-bulk capacitance
$C_{\text {in }}$	Input capacitance
$C_{\text {out }}$	Output capacitance
$C_{\text {tot }}$	Total capacitance
$C_{\text {out_tot }}$	Total output capacitance
$C_{\text {out_1 }}$	Capacitance of output 1
$C_{p a d}$	Parasitic substrate capacitance of a bonding pad
$C_{\text {par }}$	Parasitic capacitance
$C_{\text {sub }}$	Parasitic substrate winding capacitance
C_{1}	Capacitance 1
d	Thickness
d	Pitch between two conductors
$d_{o x}$	Thickness of the oxide
e	Euler's constant: $2.718281828 \ldots$
$E_{C-i n}$	Energy stored in C
$E_{C_{-} \text {out }}$	Energy delivered by C
$E_{C}(t)$	Energy stored in C as a function of t
$E_{C_{1}}$	Energy stored in C_{1}
$E_{C_{2}}$	Energy stored in C_{2}
$E_{C_{1} C_{2}}$	Energy stored in C_{1} and C_{2}
$E_{C_{1} \rightarrow C_{2}}$	Transferred energy from C_{1} to C_{2}
$E_{C_{1} \rightarrow R}$	Transferred energy from C_{1} to R

$E_{C_{1} \rightarrow R C}$	Transferred energy from C_{1} to $R C$
EEF	Efficiency Enhancement Factor
$\overline{E E F}$	Mean Efficiency Enhancement Factor
$\widetilde{E E F}$	Weighted Efficiency Enhancement Factor
EEF $\left(P_{\text {out_ }}\right.$ i $)$	$E E F$ as a function of the i th $P_{\text {out }}$
E_{L}	Magnetic energy stored in L
$E_{L-i n}$	Energy stored in L
$E_{L_{\text {_o }} \text { out }}$	Energy delivered by L
$E_{L}(t)$	Magnetic energy stored in L as a function of t
$E_{L}(t)$	Energy stored in L as a function of t
$E_{R}(t)$	Energy dissipated in R as a function of t
$E_{R_{2}}$	Energy dissipated in R_{2} in steady-state
$E_{R_{2}}(t)$	Energy dissipated in R_{2} as a function of t
$E_{U_{\text {in }}}(t)$	Energy delivered by $U_{\text {in }}$ as a function of t
$E_{U_{\text {in }} \rightarrow C_{1}}$	Transferred energy from $U_{\text {in }}$ to C_{1}
$E_{U_{\text {in }} \rightarrow C_{1} C_{2}}$	Transferred energy from $U_{\text {in }}$ to C_{1} and C_{2}
$E_{U_{\text {in }} C_{1} \rightarrow C_{2}}$	Transferred energy from $U_{\text {in }}$ and C_{1} to C_{2}
$E_{U_{\text {in }} \rightarrow C}(t)$	Transferred energy from $U_{\text {in }}$ to C as a function of t
$E_{U_{\text {in }} \rightarrow L}(t)$	Transferred energy from $U_{\text {in }}$ to L as a function of t
$E_{U_{\text {in }} \rightarrow R}(t)$	Transferred energy from $U_{\text {in }}$ to R as a function of t
$E_{U_{i n} \rightarrow R C}(t)$	Transferred energy from $U_{\text {in }}$ to R and C as a function of t
$E_{U_{\text {in }} \rightarrow R L}(t)$	Transferred energy from $U_{\text {in }}$ to R and L as a function of t
$E_{U_{\text {in }} \rightarrow R L C}(t)$	Transferred energy from $U_{\text {in }}$ to R, L and C as a function of t
f	Frequency
F	Global effective fan-out
$f_{\text {scale }}$	Scaling factor
$f_{S W}$	Switching frequency
f_{0}	Resonance frequency
$g_{1}\{ \}$	Function g_{1}
$H\left(f_{S W}\right)$	Transfer function as a function of $f_{S W}$
I	Current
$I_{a k}$	Anode-cathode current
I_{b}	Base current
I_{c}	Collector current
i_{C} _charge	Charge current through C
$i_{C _}$discharge	Discharge current through C
$I_{\text {C_leak }}$	Leakage current through C
$I_{C s}$	Control system supply current
$i_{C}(t)$	Current through C as a function of t
$i_{C 1}$	Current 1 through C
$i_{C 2}$	Current 2 through C
$I_{d s}$	Drain-source current
I_{e}	Emitter current
$I_{\text {in }}$	Input current
$I_{\text {in_max }}^{\prime}$	Maximum input current

$I_{\text {in_min }}^{\prime}$	Minimum input current
$I_{\text {in_ }}{ }_{\text {_ }}$ RMS	RMS input current
$\overline{I_{L}}$	Mean current through L
$I_{L _\max }$	Maximal current through L
$I_{L _ \text {min }}$	Minimal current through L
$i_{L}(t)$	Current through L as a function of t
$i_{L}(0)$	Initial current through L
$I_{\text {out }}$	Output current
$\overline{I_{\text {out }}}$	Mean output current
$I_{\text {out_RMS }}$	RMS output current
$I_{\text {out }}(t)$	Output current as a function of t
$i_{\text {prim }}$	Current through primary winding
$i_{\text {prim }}(s)$	Current through primary winding, in the Laplace-domain
$i_{\text {Rb }}(t)$	Current through R_{b} as a function of t
$i_{R c}(t)$	Current through R_{c} as a function of t
$i_{\text {sec }}$	Current through secondary winding
$i_{\text {sec }}(s)$	Current through secondary winding, in the Laplace-domain
$i_{S W}$	Current through SW
$I_{S W 1 _R M S}$	RMS current through $S W 1$
$\overline{i_{S W 2}}$	Mean current through SW2
$i_{S W 2}(t)$	Current through SW2 as a function of t
$i(t)$	Current as a function of t
k	Voltage conversion ratio
K	Form-factor fitting parameter
$k\left(f_{S W}\right)$	Voltage conversion ratio as a function of $f_{S W}$
$k_{\text {lin }}$	Voltage conversion ratio of a linear voltage converter
$k_{l i n _ \text {max }}$	Maximal voltage conversion ratio of a linear voltage converter
k_{M}	Magnetic coupling factor
$k_{\text {SW }}$	Voltage conversion ratio of a switched-mode voltage converter
$k(\delta)$	Voltage conversion ratio as a function of δ
ℓ	Length of a conductor
L	Inductance
$L_{C s}$	Parasitic series inductance of C
lim	Limit
$L_{\text {line }}$	Metal line length
L_{M}	Magnetizing inductance
1 n	Natural logarithm
L_{n}	Gate-length of an nMOSFET
$L_{p _b u f f}$	L_{p} of a buffer
$\ell_{\text {overlap }}$	Overlapping length of two conductors
L_{p}	Gate-length of an pMOSFET
$L_{\text {prim }}$	Primary winding inductance
$L_{\text {sec }}$	Secondary winding inductance
$L_{\text {self }}$	Self inductance
$L_{\text {tot }}$	Total inductance

$L_{\text {track }}$	Length of a metal track
L_{1}	Inductance 1
\mathfrak{L}^{-1}	Inverse Laplace-transform
M	Mutual inductance
M^{+}	Positive mutual inductance
M^{-}	Negative mutual inductance
n	Number of stages/phases
N_{a}	Doping concentration
$n_{\text {prim }}$	Number of turns in the primary winding
$n_{\text {sec }}$	Number of turns in the secondary winding
$n_{T r}$	Winding turn ratio
n_{1}	Number of turns of winding 1
$P_{\text {buff_cpar }}$	Power loss in parasitic capacitances in buffers
$P_{\text {buff_short }}$	Power loss due to short-circuit current in buffers
P_{C}	Power for charging a capacitor
$P_{\text {Df }}$	Diode forward conduction power loss
$P_{\text {diss }}$	Dissipated power
$P_{\text {in }}$	Input power
$P_{\text {in_lin }}$	Input power of a linear DC-DC voltage converter
$P_{\text {in_SW }}$	Input power of switched-mode DC-DC voltage converter
$P_{L_{-} C \text { cub }}$	Parasitic substrate capacitance power loss of an inductor
$P_{\text {out }}$	Output power
$P_{\text {out }}^{\prime}$	Real output power
$P_{\text {out_lin }}$	Output power of a linear DC-DC voltage converter
$P_{\text {out_max }}$	Maximal output power
$P_{\text {out_SW }}$	Output power of a switched-mode DC-DC voltage converter
$P_{\text {Rcs }}$	Parasitic series resistance power loss
$P_{\text {Rcp }}$	Parasitic parallel resistance power loss
$P_{\text {Rin }}$	Power loss in $R_{\text {in }}$
$P_{\text {Ron }}$	Power loss in $R_{\text {on }}$
$P_{\text {Rout }}$	Power loss in $R_{\text {out }}$
$P_{\text {Rsw } 1}$	Power loss in $R_{S W 1}$
$P_{t f+S W l}$	Fall-time power loss of SW1
$P_{t r+}$ SW1	Rise-time power loss of SW1
Q	Q-factor
Q_{d}	Charge in the drain
Q_{g}	Charge in the gate
Q_{s}	Charge in the source
$Q_{\text {in }}$	Stored charge
$Q_{\text {out }}$	Delivered charge
r	Perpendicular cross-section radius a round conductor
R	Resistance
R_{a}	Equivalent resistance
R_{b}	Equivalent resistance
$R_{\text {bondwire }}$	Parasitic series resistance of a bondwire

R_{C}	Equivalent resistance
$R_{\text {channel }}$ \square	Square-resistance of the induced channel
$R_{\text {Cdec }}$	Parasitic series resistance of $C_{\text {dec }}$
$R_{\text {cont_f }}$	Parasitic series resistance of gate contacts
$R_{\text {cont_ds }}$	Parasitic series resistance of drain/source contacts
$R_{C p}$	Parasitic parallel resistance of C
$R_{C s}$	Parasitic series resistance of C
R_{e}	Equivalent load resistance
$R_{e q}$	Equivalent resistance
$R_{\text {in }}$	Input resistance
$R_{\text {in }}$	Parasitic series resistance of $U_{\text {in }}$
R_{L}	Load resistance
R_{L}^{\prime}	Real load resistance
$R_{\text {left }}$	Conductor series resistance, seen from the left
$R_{L s}$	Parasitic series resistance of L
$R_{L S @ T}$	$R_{L s}$ at temperature T
$R_{L s @ T+\Delta T}$	$R_{L s}$ at temperature $T+\Delta T$
$R_{\text {line }}$	Line resistance
$R_{\text {loss }}$	Additional loss resistance
$R_{n+\square}$	Square-resistance of n^{+}-region
$R_{\text {on }}$	On-resistance
$R_{\text {on@ }}$	$R_{\text {on }}$ at temperature T
$R_{\text {on }}$ @T+ ${ }^{\text {a }}$ T	$R_{\text {on }}$ at temperature $T+\Delta T$
$R_{\text {on_n }}$	On-resistance of an n-MOSFET
$R_{\text {on_p }}$	On-resistance of an p-MOSFET
$R_{\text {out }}$	Parasitic output resistance
$R_{p l o y} \square$	Square-resistance of poly-silicon
$R_{\text {right }}$	Conductor series resistance, seen from the right
$R_{\text {sen }}$	Sense resistance
$R_{\text {series }}$	Variable series resistance of a series voltage converter
$R_{\text {shunt }}$	Variable shunt resistance of a shunt voltage converter
$R_{\text {SW } 1}$	Parasitic series resistance of $S W_{1}$
$R_{\text {track }}$	Parasitic series resistance of a metal track
$R_{\text {via }}$	Parasitic via series resistance
$R_{\text {via_tot }}$	Total parasitic via series resistance
R_{0}	Output resistance at f_{0}
R_{\square}	Square-resistance
s	Laplace-transform operator
\sin	Sine
t	Time
T	Period
T	Temperature
$t_{a \rightarrow b}$	Time from point a to point b
$t_{a \rightarrow c}$	Time from point a to point c
$t_{b \rightarrow c}$	Time from point b to point c

t_{d}	Dead-time
t_{f}	Fall-time
$t_{f+S W 1}$	Fall-time $S W_{1}$
$t_{\text {flank }}$	Mean rise/fall-time
$t_{o n}$	On-time
$t_{\text {off }}$	Off-time
$t_{\text {off_real }}$	Real off-time
$t_{o x}$	MOSFET gate-oxide thickness
t_{r}	Rise-time
$t_{r / f}$	Rise/fall-time
$t_{r_{-} S W 1}$	Rise-time $S W_{1}$
Tr	Transformer
$t_{S W}$	Switching/Charging time
$t_{\text {zerol }}$	Intersect time 1 with the X -axis
t_{1}	Time 1
U	Voltage
$U_{b e}$	Base-emitter voltage
$U_{c e}$	Collector-emitter voltage
$U_{C_{-} \text {max }}$	Maximal voltage over C
$U_{C _ \text {min }}$	Minimal voltage over C
$u_{C}(t)$	Voltage over C as a function of t
$U_{C}(T)$	Voltage over C at the end of T
$U_{C}(0)$	Initial voltage over C
$U_{d d}$	Nominal technology supply voltage
$U_{D f}$	Diode forward voltage drop
$U_{d s}$	Drain-source voltage
$U_{\text {dsatp }}$	Drain-source saturation voltage of a p-MOSFET
$U_{d s n}$	Drain-source voltage of an n-MOSFET
$U_{e r r}$	Error-voltage
$U_{g b}$	Gate-bulk voltage
$U_{g _ \text {_od }}$	Gate-overdrive voltage
$U_{g s}$	Gate-source voltage
$U_{g s n}$	Gate-source voltage of an n-MOSFET
$U_{\text {in }}$	Input voltage
$U_{\text {in_max }}^{\prime}$	Maximum input voltage
$U_{\text {in_min }}^{\prime}$	Minimum input voltage
$U_{\text {in_peak }}$	Peak value of $U_{\text {in }}$
$u_{L}(t)$	Voltage over L as a function of t
$U_{L 1}$	Voltage 1 over L
$U_{\text {offset }}$	Offset voltage
$U_{\text {out }}$	Output voltage
$\overline{U_{\text {out }}}$	Mean output voltage
$U_{\text {out_max }}$	Maximal output voltage
$U_{\text {out_min }}$	Minimal output voltage
$U_{\text {out_RMS }}$	RMS output voltage

$U_{\text {out_RMS }}^{\prime}$	Real RMS output voltage
$u_{\text {out }} \overline{(t)}$	Output voltage as a function of t
$u_{\text {out }}(x)$	Output voltage as a function of x
$\hat{u}_{\text {out }}(x)$	Output voltage amplitude as a function of x
$\hat{u}_{\text {out }}(\theta)$	Output voltage amplitude as a function of θ
$U_{\text {prim }}$	Voltage over the primary winding
$U_{\text {out_ptp }}$	Peak-to-peak output voltage
$u_{R a}(t)$	Voltage over R_{a} as a function of t
$u_{R b}(t)$	Voltage over R_{b} as a function of t
$u_{R c}(t)$	Voltage over R_{c} as a function of t
$u_{R C p}(t)$	Voltage over $R_{C p}$ as a function of t
$u_{\text {RCs }}(t)$	Voltage over $R_{C s}$ as a function of t
$U_{\text {ref }}$	Reference voltage
$u_{R}(t)$	Voltage over R as a function of t
$U_{s b}$	Source-bulk voltage
$U_{\text {sen }}$	Sense voltage
$U_{\text {sec }}$	Voltage over the secondary winding
$u_{S W}$	Voltage over $S W$
$U_{S W_{3}}$	Voltage over SW_{3}
$U_{\text {tria }}$	Triangular waveform voltage
V_{t}	Threshold voltage
$W_{\text {drain }}$	Drain-width
W_{n}	Gate-width of an nMOSFET
W_{p}	Gate-width of an pMOSFET
$W_{p _b u f f}$	W_{p} of a buffer
$W_{\text {source }}$	Source-width
$W_{\text {track }}$	Width of a metal track
x	$\Delta U_{\text {out }}$ approximation variable
$Z_{\text {in }}$	Input impedance
Z_{k}	Impedance ratio
$Z_{\text {out }}$	Output impedance
Z_{1}	Impedance 1
α	Resistance temperature coefficient
$\alpha\left(P_{\text {out }}\right)$	Power activity probability distribution
δ	Duty-cycle
$\delta_{\text {skin }}$	Skin-depth
$\Delta I_{\text {in }}$	Input current ripple
ΔI_{L}	Current ripple through L
$\Delta I_{L-t o t}$	Total current ripple through L
ΔI_{L-1}	Current ripple through L_{1}
$\Delta P_{\text {in }}$	Input power difference
ΔT	Temperature difference
ΔU	Voltage difference
ΔU_{C}	Voltage swing over a capacitor
$\Delta U_{\text {in }}$	Input voltage ripple

ΔU_{L}	Voltage swing over an inductor
$\Delta U_{\text {out }}$	Output voltage ripple
$\Delta U_{\text {out }}(\delta)$	Output voltage ripple as a function of δ
ΔQ	Charge difference
$\Delta Q_{S W}$	Transferred charge in one switch cycle
$\Delta \eta$	Power conversion efficiency difference
ϵ	Dielectric permittivity
ϵ_{0}	Permittivity of vacuum
$\epsilon_{r-o x}$	Relative permittivity of an oxide
η	Power conversion efficiency
η_{C} _charge	Energy charging efficiency of C
η_{C} _charge (t)	$\eta_{C _}$charge as a function of t
$\eta_{L _c}$ charge	Energy charging efficiency of L
$\eta_{L _ \text {charge }}(t)$	$\eta_{L _c}$ charge as a function of t
$\eta_{\text {RLC_charge }}(t)$	η_{C} charge in an $R L C$-circuit as a function of t
$\eta_{\text {lin }}$	Power conversion efficiency of a linear DC-DC voltage converter
$\eta_{\text {sp_down }}$	Power conversion efficiency of a step-down charge-pump
$\eta_{s p _u p}$	Power conversion efficiency of a step-up charge-pump
$\eta_{S W}$	Power conversion efficiency of a switched-mode DC-DC converter
$\eta_{S W _ \text {_max }}$	Maximal $\eta_{S W}$
$\eta_{T r}$	Power conversion efficiency of an ideal transformer
$\eta_{T r}(t)$	$\eta_{T r}$ as a function of t
$\eta_{\Phi_{1}}$	Energy conversion efficiency of Φ_{1}
γ	Thermal resistance
Φ_{1}	Phase 1
κ	CMOS technology scaling factor
λ_{p}	Early voltage of a p-MOSFET
μ_{n}	n -carrier mobility
μ_{p}	p-carrier mobility
μ	Magnetic Permeability
μ_{r}	Relative permeability
π	Circumference/diameter ratio of a circle: $3.141592654 \ldots$
ρ	Resistivity
τ_{C}	Time constant of an $R C$-circuit
τ_{L}	Time constant of an $R L$-circuit
$\tau_{L C}$	Time constant of an RLC-circuit
$\tau_{T r}$	Time constant of the primary winding of a transformer
θ	Phase difference
$\omega_{L C}$	Angular frequency of an $R L C$-circuit
Υ	$\Delta U_{\text {out }}$ approximation function
\#fingers	Number of gate fingers of a MOS capacitor
\# $C_{\text {out_1 }}$	Total required C to implement $C_{\text {out_1 }}$
\# $C_{\text {out_tot }}$	Total required C to implement $C_{\text {out_tot }}$
\#seg	Number of segments
\#via	Number of vias

∞	Infinite
$\boldsymbol{\square}$	Q.E.D.
$\boldsymbol{\nu}$	A benefit
\boldsymbol{x}	A drawback

List of Figures

Fig. 1.1 A black-box representation of a DC-DC converter 2
Fig. 1.2 The power-balance of a DC-DC converter 2
Fig. 1.3 The principle of ideal switching 3
Fig. 1.4 (a) Faraday's original 1831 induction ring [Ins10] and (b) the schematic representation of the induction ring experiment 4
Fig. 1.5 A mechanical rotary DC-AC step-up converter, for powering gas-discharge lamps [Ran34] 4
Fig. 1.6 (a) A Cockcroft-Walton voltage multiplier build in the year 1937, which was used for an early particle accelerator [Wik10]. (b) A half-wave, two-stage Cockcroft-Walton voltage multiplier 5
Fig. 1.7 A mechanical vibratory DC-DC step-up converter [Sta34] 6
Fig. 1.8 A DC-DC step-up converter, using an inverted vacuum-tube triode as primary switch and secondary rectifier [Haz40] 6
Fig. 1.9 (a) The first commercial vacuum-tube triode: the audion.
(b) The schematic symbol of a direct-heated triode and its simplified construction principle 7
Fig. 1.10 A transistorized DC-DC step-up converter, for powering a vacuum-tube pentode audio amplifier for a hearing aid device [Phi53] 8
Fig. 1.11 A two-phase DC-DC step-up converter [Wes67] 8
Fig. 1.12 (a) The first contact bipolar junction transistor [Rio10b] and (b) a schematic cross section of an NPN BJT 9
Fig. 1.13 The block-diagram representation of a mains-operated application, using step-down AC-DC converter 10
Fig. 1.14 (a) The block diagram of a battery-operated application using a DC-DC step-down converter with external components. (b) The same system implemented as a SoC, with a monolithic DC-DC converter 12
Fig. 1.15 (a) The block diagram of a battery-operated application using a DC-DC step-up converter with external components. (b) The same system implemented as a SoC, with a monolithic DC-DC converter 14
Fig. 1.16 (a) The first integrated circuit [Lee10b] and (b) the schematic circuit representation [Lee10c] 15
Fig. 1.17 (a) The schematic symbol of an n-MOSFET and (b) its schematic perspective cross-section view 16
Fig. 1.18 The qualitative behavior for an n-MOSFET of $I_{d s}$ as a function of $U_{d s}$, for different $U_{g s}$ 17
Fig. 1.19 An n-MOSFET (left) and a p-MOSFET (right) in a six-mask CMOS process. The upper drawings show the lay-out view and the lower ones a cross-section of the according physical devices 18
Fig. 1.20 The minimum feature size and the transistor count per chip as a function of time, for Intel CMOS technologies [Boh09] 19
Fig. 1.21 A cross-sectional view of the interconnect of the 32 nm Intel CMOS process [Boh10] 20
Fig. 1.22 A perspective microphotograph of a DC-DC step-up converter, using a bondwire inductor [Wen07] 22
Fig. 1.23 The graphical representation of the structural outline of the dissertation 24
Fig. $2.1 \quad$ (a) The principle of a linear series voltage converter and (b) a simple practical implementation 28
Fig. 2.2 (a) The power conversion efficiency $\eta_{\text {lin }}$ as a function of theoutput power $P_{\text {out }}$ for a linear series voltage converter, at aconstant voltage conversion ratio $k_{\text {lin }}$. The black curve is validfor a zero control system supply current $I_{c s}$ and the gray curveis valid for a non-zero $I_{c s}$. (b) The power conversion efficiency$\eta_{l i n}$ as a function of the voltage conversion ratio $k_{l i n}$ for a linearseries voltage converter, at a constant output power $P_{\text {out }}$. Theblack curve is valid for a zero control system supply current $I_{c s}$and the gray curve is valid for a non-zero $I_{c s}$29
Fig. 2.3 (a) The principle of a linear shunt voltage converter and (b) a simple practical implementation 30
Fig. 2.4 (a) The power conversion efficiency $\eta_{l i n}$ as a function of theoutput power $P_{\text {out }}$ for a linear shunt voltage converter, at aconstant voltage conversion ratio $k_{\text {lin }}$. The black curve is validfor a zero control system supply current $I_{c s}$ and the gray curveis valid for a non-zero $I_{c s}$. (b) The power conversion efficiency$\eta_{l i n}$ as a function of the voltage conversion ratio $k_{l i n}$ for a linearshunt voltage converter, for a constant value of $P_{\text {out }}=P_{\text {out_max }}$.The black curve is valid for a zero control system supply current$I_{c s}$ and the gray curve is valid for a non-zero $I_{c s}$31
Fig. $2.5 \quad$ (a) The circuit for charging a capacitor C with a series resistorR by means of a voltage source $U_{\text {in }}$. (b) The voltage $u_{C}(t)$ overC and the current $i_{C}(t)$ through C, as a function of time. (c)The energy $E_{U_{\text {in }} \rightarrow R C}(t)$ delivered by $U_{i n}$, the energy $E_{U_{i n} \rightarrow C}(t)$stored in C and the energy $E_{U_{\text {in }} \rightarrow R}(t)$ dissipated in R, as afunction of time32
$\begin{array}{ll}\text { Fig. } 2.6 \quad \text { The energy charging efficiency } \eta_{C} \text { _charge of a capacitor charged } \\ \text { by means of a voltage source } U_{\text {in }} \text { as a function of the initial } \\ & \text { voltage } U_{C}(0) \text { over the capacitor, for three different charge } \\ \text { times } t \ldots .33\end{array}$

Fig. 2.8 (a) The circuit of an ideal series-parallel charge-pump step-down DC-DC converter, together with (b) its equivalent charge circuit and (c) its equivalent discharge circuit36

Fig. 2.9 The black curves show the power conversion efficiency $\eta_{s p _d o w n}$ of an ideal series-parallel charge-pump step-down DC-DC converter, as a function of the voltage conversion ratio $k_{S W}$, for three different cases of the values of C_{1} and C_{2}. The gray curve shows the power conversion efficiency of a linear series converter, as a function of $k_{S W}$38

Fig. 2.10 (a) The circuit of an ideal series-parallel charge-pump step-up
DC-DC converter, together with (b) its equivalent charge circuit
and (c) its equivalent discharge circuit 39

Fig. 2.11 The black curves show the power conversion efficiency
$\eta_{s p _u p}$ of an ideal series-parallel charge-pump step-up DC-DC
converter, as a function of the voltage conversion ratio $k_{S W}$, for
three different cases of the values of C_{1} and C_{2}. The gray curve
shows the power conversion efficiency $\eta_{\text {lin }}$ of a linear series
converter, as a function of $k_{S W}$ 40

Fig. 2.12 (a) The circuit for charging an inductor L in series with a resistor R by means of a voltage source $U_{i n}$. (b) The voltage $u_{L}(t)$ over and the current $i_{L}(t)$ through L, as a function of time. (c) The energy $E_{U_{i n \rightarrow R L}}(t)$ delivered by $U_{i n}$, the energy $E_{U_{i n \rightarrow L}}(t)$ stored in L and the energy $E_{U_{i n \rightarrow R}}(t)$ dissipated in R, as a function of time42

Fig. 2.13 The energy charging efficiency $\eta_{L_{-}}$charge of an inductor with a series resistance charged by a voltage source $U_{i n}$, as a function of the initial current $I_{C}(0)$ through the inductor, for three different charge time t43

Fig. 2.14 The circuit for charging a series inductor L and a series capacitor C with a series resistor R, by means of a voltage source $U_{\text {in }}$44

Fig. 2.15 (a) The current $i(t)$, the voltage $u_{L}(t)$ over L, the voltage $u_{R}(t)$ over R and the voltage $u_{C}(t)$ over C as a function of time, for in ideal $(R=0)$ and (\mathbf{b}) a non-ideal $(R \neq 0)$ series $R L C$-circuit
Fig. 2.16 (a) The energy $E_{U_{i n} \rightarrow R L C}(t)$ delivered by $U_{\text {in }}$ the energy $E_{L}(t)$ stored in L, the energy $E_{R}(t)$ dissipated in R and the energy $E_{C}(t)$ stored in C as a function of time, for an ideal $(R=0)$ and (b) a non-ideal $(R \neq 0)$ series $R L C$-circuit
Fig. 2.17 (a) The energy charging efficiency $\eta_{R L C _c h a r g e ~}(t)$ of a capacitor in a periodically-damped series $R L C$-circuit as a function of time, for different values of the initial voltages $U_{C}(0)$ over C and (b) for different initial currents $I_{L}(0)$ through L 48
Fig. 2.18 (a) The circuit of an ideal boost DC-DC converter. (b) The equivalent circuit of the inductor charge phase and (c) the inductor discharge phase 50
Fig. 2.19 (a) The convention of the voltage over and the current through a capacitor C and an inductor L. (b) The current $i_{C}(t)$ through C and (c) the voltage $u_{L}(t)$ over L, both in energetic equilibrium 51
Fig. 2.20 The linearized current $i_{L}(t)$ through L, the linearized voltage $u_{L}(t)$ over L, the linearized current $i_{C}(t)$ through C and the linearized output voltage $u_{\text {out }}(t)$ as a function of time, for an ideal boost converter in CCM 52
Fig. 2.21 The voltage conversion ratio $k(\delta)$ as a function of the duty-cycle δ, for an ideal boost converter in CCM 53
Fig. 2.22 The linearized current $i_{L}(t)$ through L, the linearized voltage $u_{L}(t)$ over L, the linearized current $i_{C}(t)$ through C and the linearized output voltage $u_{\text {out }}(t)$ as a function of time, for an ideal boost converter in DCM 54
Fig. 2.23 The upper graph shows the voltage conversion ratio $k(\delta)$ as a function of the duty-cycle δ, where the black curve is valid for CCM and the gray curves for DCM. In the lower graph the black curve shows the boundary between the two CMs and the gray curves illustrate three numerical examples. These graphs are valid for an ideal DC-DC boost converter 58
Fig. 2.24 The upper graph shows the power conversion efficiencies $\eta_{S W}$ and $\eta_{l i n}$ of a switched-mode DC-DC converter and a linear series voltage converter having the same voltage conversion ratio $k_{\text {lin }}=k_{S W}$, as a function of the output power $P_{\text {out }}$. The lower graph shows the corresponding $E E F$ and $\overline{E E F}$, as a function of $P_{\text {out }}$ 61
Fig. 3.1 (a) The circuit of an ideal buck DC-DC converter. (b) The equivalent circuit of the inductor charge phase and (c) the inductor discharge phase 67
Fig. 3.2 The linearized $i_{L}(t)$, the linearized $u_{L}(t)$, the linearized $i_{C}(t)$ and the linearized $u_{\text {out }}(t)$ as a function of time, for an ideal buck DC-DC converter in CCM 68
Fig. 3.3 The linearized $i_{L}(t)$, the linearized $u_{L}(t)$, the linearized $i_{C}(t)$ and the linearized $u_{\text {out }}(t)$ as a function of time, for an ideal buck DC-DC converter in DCM 69
Fig. 3.4 The upper graph shows $k(\delta)$ as a function of δ, where the black curve is valid for CCM and the gray curves for DCM. In the lower graph the black curve shows the boundary between the two CMs and the gray curves illustrate three numerical examples. These graphs are valid for an ideal DC-DC buck converter 70
Fig. 3.5 The circuit of an ideal bridge DC-DC converter 73
Fig. 3.6 The voltage conversion ratio $k(\delta)$ as a function of the duty-cycle δ, for a bridge converter in CCM 73
Fig. 3.7 The circuit of an ideal three-level buck DC-DC converter 75
Fig. 3.8 (a) The timing of the four switches of an ideal three-level buck DC-DC converter in CCM, for $\delta<0.5$ and (b) for $\delta>0.5$ 75
Fig. 3.9 The circuit of an ideal buck ${ }^{2}$ DC-DC converter 77
Fig. 3.10 The voltage conversion ratio $k(\delta)$ as a function of the duty-cycle δ, for an ideal buck ${ }^{2}$ converter in CCM 78
Fig. 3.11 (a) The circuit of an ideal Watkins-Johnson DC-DC converter, using an inductor and (b) using two coupled inductors 80
Fig. 3.12 The voltage conversion ratio $k(\delta)$ as a function of the duty-cycle δ, for a Watkins-Johnson converter in CCM 80
Fig. 3.13 The total required capacitance $C_{\text {tot }}$ of five step-down DC-DC converter topologies as a function of the output power $P_{\text {out }}$. These values are obtained by means of SPICE-simulations, such that the five converters meet with the specifications of Table 3.1 83
Fig. 3.14 The circuit of an ideal current-fed bridge DC-DC converter 85
Fig. 3.15 The voltage conversion ratio $k(\delta)$ as a function of the duty-cycle δ, for a current-fed bridge converter in CCM 85
Fig. 3.16 (a) The circuit of an ideal inverse Watkins-Johnson DC-DC converter, using an inductor and (b) using two coupled inductors 87
Fig. 3.17 The voltage conversion ratio $k(\delta)$ as a function of the duty-cycle δ, for an inverse Watkins-Johnson converter in CCM 87
Fig. 3.18 The total required capacitance $C_{\text {tot }}$ of three DC-DC step-up converter topologies as a function of the output power $P_{\text {out }}$. These values are obtained by means of SPICE-simulations, such that the three converters meet with the specifications of Table 3.8 90
Fig. 3.19 The circuit of an ideal buck-boost DC-DC converter 91
Fig. 3.20 The voltage conversion ratio $k(\delta)$ as a function of the duty-cycle δ, for an ideal buck-boost converter in CCM 92
Fig. 3.21 The circuit of an ideal non-inverting buck-boost DC-DC converter 92
Fig. 3.22 The voltage conversion ratio $k(\delta)$ as a function of the duty-cycle δ, for an ideal non-inverting buck-boost converter in CCM 92
Fig. 3.23 The circuit of an ideal Ćuk DC-DC converter 93
Fig. 3.24 The circuit of an ideal SEPIC DC-DC converter 94
Fig. 3.25 The circuit of an ideal zeta DC-DC converter 96
Fig. 3.26 The total required capacitance $C_{\text {tot }}$ of three DC-DC step- up/down converter topologies as a function of the output power $P_{\text {out }}$. These values are obtained by means of SPICE-simulations, such that the three converters meet with the specifications of Table 3.13 99
Fig. 3.27 The model of an ideal transformer $T r$, together with its magnetizing inductance L_{M} 100
Fig. 3.28 (a) The circuit for calculating the energy transfer of Tr and (b) the equivalent T-circuit, both in the Laplace-domain 101
Fig. 3.29 (a) $i_{\text {prim }}(t)$ and $u_{\text {out }}(t)$, (b) $E_{U_{\text {in }}}(t)$ and $E_{R_{2}}(t)$ and (c) $\eta_{T r}(t)$ as a function of time t, different values of coupling factor k_{M} 102
Fig. 3.30 The circuit of an ideal forward DC-DC converter 102
Fig. 3.31 The circuit of an ideal full-bridge buck DC-DC converter 103
Fig. 3.32 The circuit of an ideal push-pull boost DC-DC converter 103
Fig. 3.33 The circuit of an ideal flyback DC-DC converter 104
Fig. 3.34 The circuit of an ideal series resonant DC-DC converter 105
Fig. 3.35 The voltage conversion ratio $k\left(f_{S W}\right)$ as a function of the switching frequency $f_{S W}$, for a series resonance DC-DC converter 105
Fig. 3.36 (a) The circuit of a halve-bridge galvanic separated series resonance DC-AC high-voltage converter for the FAIMS setup. (b) $U_{\text {out }}$ of the DC-AC converter as a function of t. (c) A photograph of the realization of the DC-AC converter 106
Fig. 3.37 The concept of multi-phase DC-DC converters 107
Fig. 3.38 The example of how a two-phase DC-DC converter can achieve a higher power conversion efficiency $\eta_{S W}$ than a single-phase DC-DC converter, at the same output power $P_{\text {out }}$ 108
Fig. 3.39 (a) The timing signals of a two-phase converter and (b) the equivalent representation with sine waves, assuming that the converter is operating in CCM 109
Fig. 3.40 The circuit of an ideal n-phase boost DC-DC converter 110
Fig. 3.41 (a) The current $i_{C}(t)$ through the output capacitor C of a 2-phase boost converter for $\delta<50 \%$ and (b) for $\delta>50 \%$, both valid for CCM. $i_{C}(t)$ is divided into the respective parts from the first (black curve) and second converter (gray curve) 111
Fig. 3.42 The output voltage ripple $\Delta U_{\text {out }}$ as a function of the duty-cycle δ for an ideal 1-phase, 2-phase and 4-phase boost DC-DC converter. For the 1-phase and 2-phase boost converter both the exact and approximated functions are plotted. For the 2-phase and 4-phase boost converter the approximated functions are plotted 112
Fig. 3.43 The circuit of an ideal n-phase buck DC-DC converter 113
Fig. 3.44 (a) The respective currents $i_{L 1}(t)$ and $i_{L 2}(t)$ through inductors L_{1} and L_{2} of a 2-phase buck converter for $\delta<50 \%$ and (b) for $\delta>50 \%$, both valid for CCM 114
Fig. 3.45 The output voltage ripple $\Delta U_{\text {out }}$ as a function of the duty-cycle δ for an ideal 1-phase, 2-phase and 4-phase buck DC-DC converter. For the 1-phase and 2-phase buck converter both the exact functions are plotted. For the 2-phase and 4-phase buck converter the approximated functions are plotted 115
Fig. 3.46 The concept of Single-Inductor Multiple-Output (SIMO) DC-DC converters 116
Fig. 3.47 The circuit of an ideal SIMO boost DC-DC converter with n outputs 117
Fig. 3.48 The circuit of an ideal SIMO buck DC-DC converter with n outputs 117
Fig. 3.49 The circuit of an ideal DC-DC boost Series Multiple Output Converter (SMOC) with n outputs 118
Fig. 3.50 The circuit of an ideal DC-DC buck Series Multiple Output Converter (SMOC) with n outputs 120
Fig. 4.1 The circuit of a boost DC-DC converter with all its resistive losses 125
Fig. 4.2 (a) The equivalent circuit of the charge phase and (b) discharge phase of the inductor L for a boost DC-DC converter with all its resistive losses 125
Fig. 4.3 The current $i_{S W 2}(t)$ through $S W_{2}$ as a function of time t for a boost converter in steady-state DCM is shown by the gray curve, the black curve shows its linear approximation 128
Fig. 4.4 The voltage $u_{C}(t)$ over C as a function of time t for a boost converter in steady-state DCM is shown by the gray curve, the black curve shows its piecewise linear approximation 128
Fig. 4.5 The circuit of a buck DC-DC converter with all its resistive losses 131
Fig. 4.6 (a) The equivalent circuit of the charge phase and (b) discharge phase of the inductor L for a buck DC-DC converter with all its resistive losses 132
Fig. 4.7 The current $i_{L}(t)$ through L as a function of time t for a buck converter in steady-state DCM is shown by the gray curve, the black curve shows its linear approximation 133
Fig. 4.8 The voltage $u_{C}(t)$ over C as a function of time t for a buck converter in steady-state DCM is shown by the gray curve, the black curve shows its piecewise linear approximation 134
Fig. 4.9 The lumped model for a metal-track or bondwire inductor, taking both the parasitic series resistance $R_{L s}$ and parasitic substrate capacitance $C_{\text {sub }}$ into account 136
Fig. 4.10 (a) The top-view of a planar square spiral inductor above a conductive substrate and (b) the cross-sectional view with indication of the most significant mutual inductances 137
Fig. 4.11 The perpendicular cross-sectional view of a conductor which is prone to the skin-effect 139
Fig. 4.12 The black curve shows the series resistance $R_{\text {bondwire }}$ per millimeter of length ℓ for a gold bondwire with $r=12.5 \mu \mathrm{~m}$, as a function of frequency f and the gray curve denotes the DC value 140
Fig. 4.13 The model for a capacitor, taking the parasitic series resistance $R_{C s}$, the parasitic parallel resistance $R_{C p}$ and the parasitic series inductance $L_{C s}$ into account 142
Fig. 4.14 The output voltage $u_{\text {out }}(t)$ of a boost converter in (a) DCM and (b) CCM, as a function of time t. The gray curves are valid for $R_{C s}=0$ and the black curves for a finite value of $R_{C s}$ 143
Fig. 4.15 The output voltage $u_{\text {out }}(t)$ of a buck converter in (a) DCM and (b) CCM, as a function of time t. The gray curves are valid for $R_{C s}=0$ and the black curves for a finite value of $R_{C s}$ 144
Fig. 4.16 The parallel circuit of two capacitors C_{1} and C_{2}, with their respective parasitic series resistances R_{1} and R_{2}, and the equivalent circuit with one capacitor $C_{e q}(f)$ and resistor $R_{e q}(f)$ 145
Fig. 4.17 The upper graph shows the equivalent capacitance $C_{e q}(f)$ and the lower graph shows the equivalent resistance $R_{e q}(f)$, both as a function of frequency f 146
Fig. 4.18 The power loss $P_{D f}$ of forward voltage drop of a diode (black curve) and the power loss $P_{\text {Ron }}$ of the on-resistance of a MOSFET (gray curve), both as a function of the current I 147
Fig. 4.19 The parasitic capacitances in an n-MOSFET 148
Fig. 4.20 The currents $i_{S W 1}(t)$ and $i_{S W 2}(t)$ through $S W_{1}$ and $S W_{2}$ and the voltages $u_{S W 1}(t)$ and $u_{S W 2}(t)$ over $S W_{1}$ and $S W_{2}$ for a boost converter in (a) DCM and (b) CCM 150
Fig. 4.21 The currents $i_{S W 1}(t)$ and $i_{S W 2}(t)$ through $S W_{1}$ and $S W_{2}$ and the voltages $u_{S W 1}(t)$ and $u_{S W 2}(t)$ over $S W_{1}$ and $S W_{2}$ for a buck converter in (a) DCM and (b) CCM 151
Fig. 4.22 The physical cross-sections (a) of the freewheeling p-MOSFET in a boost converter and (b) the freewheeling n-MOSFET in a buck converter. In both cross-sections the bulk current, which occurs at the transition between the charge and discharge phase, is shown 153
Fig. 4.23 The circuit of a digital tapered CMOS buffer with n-stages 153
Fig. 4.24 A perspective view of a square metal-track conductor, with the definition of its width $W_{\text {track }}$, its length $L_{\text {track }}$ and its thickness d 155
Fig. 4.25 (a) The model for the parasitic input resistance $R_{\text {in }}$ and inductance $L_{i n}$, with an on-chip decouple capacitor $C_{d e c}$ and its parasitic series resistance $R_{C d e c}$. (b) The equivalent impedance circuit of this model 156
Fig. 4.26 The on-chip input voltage ripple $\Delta U_{\text {in }}$ as a function of the capacitance of the decouple capacitor $C_{d e c}$, for three different values of the parasitic series resistance $R_{C d e c}$ of the decouple capacitor. The parameters for which this plot is valid are given in Table 4.1 157
Fig. 4.27 The flow-chart of the model flow for the boost and the buck converter, starting from the differential equations and taking all the significant resistive and dynamic losses into account, except for the temperature effects 162
Fig. 4.28 The flow-chart showing the additional flow to take the temperature and self-heating effects into account for the model of the boost and the buck converter 163
Fig. 4.29 The qualitative design trade-offs for monolithic DC-DC converters: (a) $f_{S W}$ as a function of L for different values of C, (b) $\eta_{S W}$ as a function of L for different values of C, (c) $I_{L_{-} \max }$ and $I_{L_{-} \min }$ as a function of L for different values of C, (d) A_{L} as a function of L, for different values of $R_{L S}$, (e) $\eta_{S W}$ as a function of A_{L} for different values of C, (f) $f_{S W}$ as a function of C for different values of $R_{C s},(\mathbf{g}) \Delta U_{\text {out }}$ as a function of C for different values of $R_{C s}$ and (h) $\eta_{S W}$ as a function of $C \sim A_{C}$, for different values of $R_{C s}$ 166
Fig. 5.1 The concept of a control system for an inductive DC-DC converter 170
Fig. 5.2 The concept of Pulse Width Modulation (PWM) signal Φ_{1} generation by means of comparing a triangular waveform $U_{\text {tria }}$ to an error-voltage $U_{e r r}$ 171
Fig. 5.3 The basic principle of subharmonic oscillations in a DC-DC converter with a PWM control loop 172
Fig. 5.4 The block diagram of the PWM control system implementation of a fully-integrated boost converter [Wen07] 173
Fig. 5.5 The circuit of a symmetrical cascoded OTA with a current-loaded common emitter output stage 174
Fig. 5.6 The circuit of a comparator 174
Fig. 5.7 The circuit of a time-delay 175
Fig. 5.8 The circuit of a level-shifter [Ser05] 175
Fig. 5.9 The concept of Pulse Frequency Modulation (PFM), with a constant on-time $t_{o n}$. The upper graph shows the timing for low load, low frequency operation and the lower graph shows the timing for high load, high frequency operation 176
Fig. 5.10 The power conversion efficiencies $\eta_{S W_{-} P F M}$ and $\eta_{S W_{-} P W M}$ of a PFM (constant $t_{o n}$) and a PWM controlled DC-DC (gray curve) converter, as a function of the output power $P_{\text {out }}$. The solid black curve and the dashed black curve denote $\eta_{S W_{-} P F M}$ for equal switching frequencies $f_{S W_{-} P F M}=f_{S W_{-} P W M}$ at the maximal output power $P_{\text {out_max }}$ and at the minimal output power $P_{\text {out_max }}$, respectively 177

