

A SUCCESS PACKAGE FOR ASPIRANTS OF MATHS OLYMPIAD

INTERNATIONAL MATHEMATICS OLYMPIAD

Prasoon Kumar

प्रकाशक

F-2/16, अंसारी रोड, दरियागंज, नई दिल्ली-110002 क 23240026, 23240027 • *फैक्स:* 011-23240028 *E-mail:* info@vspublishers.com • *Website:* www.vspublishers.com

क्षेत्रीय कार्यालय : हैदराबाद 5-1-707/1, ब्रिज भवन (सेन्ट्रल बैंक ऑफ इण्डिया लेन के पास) बैंक स्ट्रीट, कोटी, हैदराबाद-500 095

> ☎ 040-24737290 *E-mail:* vspublishershyd@gmail.com

शाखा : मुम्बई जयवंत इंडस्ट्रिअल इस्टेट, 1st फ्लोर-108, तारदेव रोड अपोजिट सोबो सेन्ट्रल, मुम्बई - 400 034 क 022-23510736 *E-mail:* vspublishersmum@gmail.com

© **कॉपीराइट:** वी*ण्ड* एस *पब्लिशर्स* ISBN 978-93-505795-2-7

DISCLAIMER

इस पुस्तक में सटीक समय पर जानकारी उपलब्ध कराने का हर संभव प्रयास किया गया है। पुस्तक में संभावित त्रुटियों के लिए लेखक और प्रकाशक किसी भी प्रकार से जिम्मेदार नहीं होंगे। पुस्तक में प्रदान की गयी पाठ्य सामग्रियों की व्यापकता या सम्पूर्णता के लिए लेखक या प्रकाशक किसी प्रकार की वारंटी नहीं देते हैं।

पुस्तक में प्रदान की गयी सभी सामग्रियों को व्यावसायिक मार्गदर्शन के तहत सरल बनाया गया है। किसी भी प्रकार के उदधरण या अतिरिक्त जानकारी के स्रोत के रूप में किसी संगठन या वेबसाइट के उल्लेखों का लेखक या प्रकाशक समर्थन नहीं करता है। यह भी संभव है कि पुस्तक के प्रकाशन के दौरान उद्धत बेवसाइट हटा दी गयी हो।

इस पुस्तक में उल्लिखित विशेषज्ञ के राय का उपयोग करने का परिणाम लेखक और प्रकाशक के नियंत्रण से हटकर पाठक की परिस्थितियों और कारकों पर पूरी तरह निर्भर करेगा।

पुस्तक में दिये गये विचारों को आजमाने से पूर्व किसी विशेषज्ञ से सलाह लेना आवश्यक है। पाठक पुस्तक को पढ़ने से उत्पन्न कारकों के लिए पाठक स्वयं पूर्ण रूप से जिम्मेदार समझा जायेगा।

उचित मार्गदर्शन के लिए पुस्तक को माता-पिता एवं अभिभावक की निगरानी में पढ़ने की सलाह दी जाती है। इस पुस्तक के खरीददार स्वयं इसमें दिये गये सामग्रियों और जानकारी के उपयोग के लिए सम्पूर्ण जिम्मेदारी स्वीकार करते हैं।

इस पुस्तक की सम्पूर्ण सामग्री का कॉपोराइट लेखक/प्रकाशक के पास रहेगा। कवर डिजाइन, टेक्स्ट या चित्रों का किसी भी प्रकार का उल्लंघन किसी इकाई द्वारा किसी भी रूप में कानूनी कार्रवाई को आर्मोत्रेत करेगा और इसके परिणामों के लिए जिम्मेदार समझा जायेगा।

PUBLISHER'S NOTE.

V&S Publishers, after the grand success of a number of academic and general books, is pleased to bring out a series of *Mathematics Olympiad books* under *The Gen X series – generating Xcellence in generation X* – which has been designed to focus on the problems faced by students. In all books the concepts have been explained clearly through various examples, illustrations and diagrams wherever required. Each book has been developed to meet specific needs of students who aspire to get distinctions in the field of mathematics and want to become Olympiad champs at national and international levels.

To go through Maths Olympiad successfully, students need to do thorough study of topics covered in the *Olympiads syllabus and the topics covered in school syllabus as well*. The Olympiads not only tests the subjective knowledge but Reasoning skills also. So students are required to comprehend the depth of concepts and problems and gain experience through practice. The Olympiads check efficiency of candidates in problem solving. These exams are conducted in different stages at regional, national, and international levels. At each stage of the test, the candidate should be fully prepared to go through the exam. Therefore, this exam requires careful attention towards comprehension of concepts, thorough practice, and application of rules and concepts.

While other books in market focus selectively on questions or theory; V&S Maths Olympiad books are rather comprehensive. Each book has been divided into five sections namely *Mathematics, Logical Reasoning, Achiever's section, Subjective section, and Model Papers.* The theory has been explained through solved examples. To enhance problem solving skills of candidates, *Multiple Choice Questions (MCQs)* with detailed solutions are given at the end of each chapter. Two *Mock Test Papers* have been included to understand the pattern of exam. A CD containing Study Chart for systematic preparation, Tips & Tricks to crack Maths Olympiad, Pattern of exam, and links of Previous Years Papers is accompanied with this book. The books are also useful for various competitive exams such as NTSE, NSTSE, and SLSTSE as well.

We wish you all success in the examination and a very bright future in the field of mathematics.

All the best

CONTENTS_____

SECTION 1 : MATHEMATICAL REASONING			
1.	Real Numbers	9	
2.	Polynomials	17	
3.	Linear Equations in Two Variables	27	
4.	Quadratic Equations	39	
5.	Arithmetic Progression	48	
6.	Triangles	57	
7.	Co-ordinate Geometry	67	
8.	Trigonometry	76	
9.	Circles	83	
10.	Surface Area and Volume	93	
11.	Statistics	104	
12.	Probability	115	
SECTION 2 : LOGICAL REASONING			
Part A : Verbal Reasoning			
1.	Analogy	125	
2.	Classification	130	
3.	Coding and Decoding	135	
4.	Number, Ranking, and Time Sequence Test	145	
5.	Direction Sense Test	152	
6.	Alphabet Test	161	
7.	Blood Relation Test	167	
8.	Mathematical Operations	173	
	Part B : Non-Verbal Reasoning		
9.	Series	180	
10.	Paper Folding	187	
11.	Paper Cutting	193	
12.	Mirror Images	204	

SECTION 3 : ACHIEVER'S SECTION	215
Short Answer Questions	223
SECTION 5 : MODEL PAPERS Model Test Paper – 1 Model Test Paper – 2	235 239

Section 1 MATHEMATICAL REASONING

Real Numbers

Key Points

0, 1 011100	
Natural Numbers	$N = \{1, 2, 3, 4, \dots \}$
Whole Numbers	$W = \{0, 1, 2, 3, 4, \dots \}$
Integers	$Z = \{\ldots -3, -2, -1, 0, 1, 2, 3, 4, \ldots \}$
Rational Numbers	$Q = \{\frac{p}{q}, q \neq 0, p q \text{ are co-prime}\}$

Rational Numbers

These numbers when expressed as decimal representation are either finite or infinite recurring.

Irrational Numbers: Those which are not rational e.g. $\sqrt{3}$, $\sqrt{5}$, ..., π , etc.

These numbers when expressed as decimal representation are infinite and non recurring.

Real Numbers: Collection of all above numbers i.e. N, W, Z, O and irrational numbers.

All numbers can be represented on the number line.

Euclid's Division Algorithm: This is based on Euclid's division lemma.

Euclid's Division lemma: Given positive integers a and b, there exist unique integers a and r such that a = bq + r, $0 \le r < b$

According to this the H.C.F. of any two positive integers a and b with a > b is obtained as follows:

Step 1. Apply the division lemma to find q and r, where a = bq + r, $0 \le r < b$

Step 2. If r = 0 then H.C.F. is b. If $r \neq 0$, apply Euclid's lemma to b and r.

Step 3. Continue the process till the remainder is zero. The divisor at this stage will be H.C.F. (a, b). Also H.C.F. (a, b) = H.C.F. (b, r).

Example: If *a* = 117, *b* = 45

By Euclid's division lemma.

 $117 = 45 \times 2 + 27$ $a = bd_1 + r_1,$

where $d_1 = 2, r_1 = 27$

We observe that common divisor of a = 117 and b = 45 are also common divisor of b = 45 and $r_1 = 100$ 27 and vice versa

 $45 = 27 \times 1 + 18$

 $b = d_2 r_1 + r_2$ where $d_2 = 1$ and $r_2 = 18$

We observe that common divisor of $r_1 = 27$ and $r_2 = 18$ are the common divisor of b = 45 and $r_1 = 27$ and vice versa

Applying Euclid's division lemma on

 $r_1 = 27$ and $r_2 = 18$ $27 = 18 \times 1 + 9$ $r_1 = d_3 r_2 + r_3$, where $d_3 = 1$, $r_3 = 9$ $r_2 = 18$ and $r_3 = 9$ are common divisor of a = 117 and b = 45 and vice versa $18 = 9 \times 2 + 0$ $r_3 = 9$ is a divisor of $r_2 = 18$ and $r_3 = 9$ \therefore H.C.F. = 9

Real Numbers

Use Euclid's division algorithm to find H.C.F. of 4052 and 12576. Example 1 (a) 3 (b) 2(c) 1 (d) 4 Solution : (a) $12576 = 4052 \times 3 + 400$ $4052 = 420 \times 9 + 272$ $420 = 272 \times 1 + 148$ $272 = 148 \times 1 + 124$ $148 = 124 \times 1 + 24$ $124 = 24 \times 5 + 4$ $24 = 4 \times 6 + 0$ Divisor at the last stage or remainder at the earlier stage is the H.C.F i.e. 4. Find the H.C.F. of 65 and 117 and express it in the form 65m + 117n. Example 2 (a) 13 (c) 10 (b) 11 (d) 5 Solution : (a) Here $117 = 65 \times 1 + 52$ $65 = 52 \times 1 + 13$ $52 = 13 \times 4 + 0$ H C F of 65 and 117 = 13Now $13 = 65 - 52 \times 1$ $13 = 65 - (117 - 65 \times 1)$ $13 = 65 - 117 + 65 \times 1$ $13 = 65 \times 2 + 117 (-1)$ $13 = 65 \times 2 - 117$ 13 = 65m + 117n, where m = 2, n = -1Find the largest number that divides 2053 and 967 and leaves a remainder of 5 and 7 Example 3 respectively. (a) 64 (b) 60 (c) 55 (d) 99 Solution : (a) Here 2053 - 5 = 2048967 - 7 = 960Required number = H.C.F. of 2048 and 960 960) 2048 (2 1920 128) 960(7 896 64) 128(2 128 The largest number = 64

If x and y are two numbers then the product of L.C.M. and H.C.F. is equal to product of these numbers i.e., xy

Fundamental Theorem of Arithmetic

Every composite number can be expressed as a product of primes and this factorization is unique apart from the order in which the prime factors occur.

Revisiting Irrational Numbers: Let p be a prime number. If p divides a^2 , then p divides a, where a is a positive integer.

Example 5 Express 7429 as the product of prime factors.

Revisiting Rational Numbers and their Decimal Expansions

I. Let *x* be a rational number whose decimal expansion terminates. Then *x* can be expressed in the form $\frac{P}{d}$, where *P* and *d* are co-primes. The Prime factorization of *d* is of the form $2^m \times 5^n$, where *m* and *n* are non-negative integers.

. . .

Example 7
Find the decimal expansion of
$$\frac{189}{125}$$
.
(a) 1.5
(b) 1.4
(c) 1.1
(d) none of these
Solution :
(a) $\frac{189}{125} = \frac{189}{5^3} = \frac{2^3 \times 189}{2^3 \times 5^3}$
 $= \frac{8 \times 189}{(2 \times 5)^3} = \frac{1512}{10^3} = 1.512$
Example 8
Find decimal expansion of $\frac{7}{8}$.
(a) 8.5
(b) 0.875
(c) 8.4
(d) 0.878
Solution:
(b) $\frac{7}{8} = \frac{7}{2^3} = \frac{7 \times 5^3}{2^3 \times 5^3}$
 $= \frac{7 \times 125}{(2 \times 5)^3} = \frac{875}{10^3}$
 $= 0.875$
IL Let $x = \frac{P}{2}$ be a rational number such that the prime factorization of d is of the form $2^m \times 5^n$ when

II. Let $x = \frac{r}{d}$ be a rational number such that the prime factorization of *d* is of the form $2^m \times 5^n$ where *m* and *n* are non-negative integers then *x* has a decimal expansion which terminates after *K* places of decimals, where *K* is the larger of *m* and *n*.

Example 9 At how many places of decimal
$$\frac{13}{3125}$$
 terminates?
(a) 5 (b) 4 (c) 3 (d) 2
Solution: (a) $\frac{13}{3125} = \frac{13}{2^0 \times 5^5}$

So, it has terminating decimal expansion which terminates after 5 places of decimal.

(12)

III. If $x = \frac{P}{d}$ be a rational number such that the prime factorization of *d* is of the form $2^m \times 5^n$, where *m* and *n* are non-negative integers, then *x* has a decimal expansion which is non terminating repeating.

Example 10 Is
$$\frac{64}{455}$$
 non-terminating repeating?
(a) yes (b) no (c) can't say (d) none of them
Solution : (a) $\frac{64}{455} = \frac{64}{5 \times 7 \times 13}$
As 455 is not of the form $2^m \times 5^n$
So, the decimal expansion of $\frac{64}{455}$ is non-terminating repeating

International Mathematics Olympiad - Class 10

Multiple Choice Questions

- 1. What is the largest number that divides 445, 572 and 699 having remainders 4, 5, 6 respectively?
 - (a) 63 (b) 65

(c) 62 (d) 64

- 2. If the H.C.F. of 408 and 1032 is expressed in the form of $1032m - 408 \times 5$. What is the value of $m^{?}$
 - (b) 2(c) - 2(a) 4 (d) 3
- 3. What is the largest number which divides 615 and 963 leaving remainder 6 in each case? (a) 78 (b) 76
 - (c) 87 (d) 83
- 4. If 5005 is expressed in the term of product of price factors, then which prime factor is the largest?
 - (a) 5 (b) 11 (c) 13 (d) 17
- 5. What is the L.C.M. of 144, 180 and 192 by prime factorization method?

(a) 2680	(b) 2780
(c) 2880	(d) None of these

6. The H.C.F. of two numbers is 16 and their product is 3072. What is their L.C.M.? (a) 102(b) 172

(u) 172	(0) 1/2
(c) 152	(d) 186

7. What is the largest positive integer that will divide 398, 436 and 542 leaving remainder 7, 11 and 15 respectively?

(a) 16	(b) 18
(c) 17	(d) 14

8. The H.C.F of two numbers is 145, their L.C.M. is 2175. If one number is 725, then what is the other number? (a) 125(h) 125

(a) 455	(0) 423
(c) 415	(d) 465

9. What is the smallest number that when divided by 35, 56, and 91 leaves remainder 7 in each case?

(a) 3847	(b) 3647
(c) 3247	(d) 3547

10. If L.C.M. and H.C.F. of two rational numbers are equal then the numbers must be

	(a) Prime	(b) E	qual
	(c) Co-prime	(d) C	Composite
11.	$2 + \sqrt{2}$ is		
	(a) Irrational	(b) a	n integer
	(c) not real	(d) ra	ational
12.	1.2348 is		
	(a) an integer		
	(b) an irrational number		
	(c) a rational nu	mber	
	(d) None of thes	e	
13.	Find the sum of factors in the pri	the exponent me factorizati	s of the prime on of 196.
	(a) 2 (b) 3	(c) 4	(d) 5
14.	What is the H.C	.F of 95 and 1	52?
	(a) 1 (b) 1	9 (c) 38	(d) 57
15.	Find the smalle	st number by	which $\sqrt{27}$
	should be multiplied so as to get a rational		
	number.		
	(a) $\sqrt{27}$	(b) 3	$3\sqrt{3}$
	(c) 3	(d) v	$\sqrt{3}$
16.	If <i>n</i> is a natural number then $9^2n - 4^2n$ is		$19^2n - 4^2n$ is
	always divisible	by	2
	(a) 5 (a) hoth 5 and 1	(b) l	3
1 -	(c) both 5 and 1.		some of these $(n - 5^n)$
17.	If <i>n</i> is any natural number then $6'' - 5''$ always and a with		6° – 5° always
	(a) 3 (b) 1	(c) 7	(d) 5
10	Eind I C M of	(c) /	(u) 5
10.	(a) 120	+2 and 03 . (b) 1	26
	(c) 115	(d) 1	16
19.	What is the sun	1 of exponent	s of the prime
	factors in the pri	me factorizati	on of 576?
	(a) 6 (b) 8	(c) 7	(d) 5
20.	What is the diffe	erence of expo	nents of prime
	factors in prime factorization of 1225?		of 1225?
	(a) 1	(b) 2	
	(c) 2	(d) N	lone of these
21.	Find the least nu	umber that is o	divisible by all
	the numbers bety	veen 1 and 101	both inclusive?

(a) 2520	(b) 2320
(c) 1920	(d) 2720

Real Numbers

22.	$5 - \sqrt{3}$ is	
	(a) rational	(b) irrational
	(c) real	(d) integer
23.	In the prime factorization	on of 13915 what
	is difference between l	argest factor and
	smallest factor?	
	(a) 18 (b) 23 (c)	17 (d) 15
24.	If the H.C.F. of 210 and 55	is expressible in the
	form $210 \times 5 + 55y$ then we	hat is the value of y?
	(a) 19 (b) -19 (c)	15 (d) –15
25.	The decimal expansion	of the rational
	number $\frac{43}{43}$ will term	ninate after
	$2^4 \times 5^3$	
	(a) 4 places	(b) 2 places
	(c) 3 places	(d) 5 places
26.	The product of H.C.F.	and L.C.M. of
	the smallest prime nun	iber and smallest
	composite number is $(a) 2$ $(b) (a) (c)$	Q (L) L
	(a) 2 (b) 0 (c)	4 (d) 8
27.	Which of the follow	ing number has
	17	21
	(a) $\frac{17}{40}$	(b) $\frac{21}{2^3 5^6}$
	4 <i>9</i>	2.5
	(c) $\frac{89}{2^3 2^2}$	(d) $\frac{57}{45}$
	2 ³ .3 ² 45	
28.	What is product of H.C.F. and L.C.M. of the	
	numbers 81 and $50?$	(1) 4050
	(a) 900 (c) 8100	(0) 4050 (d) 2100
	(0) 0100	(u) 2100
29.	The decimal expansion of	$\frac{147}{122}$ will terminate
	after how many places of desimal?	
	(a) 1	(h) 2
	(c) 3	(d) None of these
		()

30. If H.C.F. of 306 and 657 is 9, then what is the L.C.M. of 306 and 657?

(a) 22338	(b) 22318
(c) 22238	(d) 22118

- **31.** If *n* is a natural number, then $9^{2n} 4^{2n}$ is always divisible by _____.
 - (a) 5
 - (b) 13 (c) both (a) and (b)
 - (d) neither (a) nor (b)
- **32.** N is a natural number such that when N^3 is divided by 9, it leaves remainder *a*. It can be concluded that

(a) *a* is a perfect square

- (b) *a* is a perfect cube
- (c) both (a) and (b)

(d) neither (a) nor (b)

33. If *n* is any natural number, then $6^n - 5^n$ always ends with _____.

(a) 1 (b) 3 (c) 5 (d) 7

- 34. Which of the following is always true?
 (a) The rationalising factor of a number is unique
 (b) The sum of two distinct irrational numbers is rational
 (c) The product of two distinct irrational numbers is irrational
 - (d) none of these
- 35. Ashok has two vessels which contain 720 ml and 405 ml of milk respectively. Milk in each vessel is poured into glasses of equal capacity to their brim. Find the minimum number of glasses which can be filled with milk.
 (a) 45 (b) 35 (c) 25 (d) 30

Answer Key											
1. (a)	2. (b)	3. (c)	4. (c)	5. (c)	6. (a)	7. (c)	8. (a)	9. (b)	10 (b)		
11. (a)	12. (c)	13. (c)	14. (b)	15. (d)	16. (c)	17. (b)	18. (b)	19. (b)	20. (c)		
21. (a)	22. (b)	23. (a)	24. (b)	25. (a)	26. (d)	27. (b)	28. (b)	29. (c)	30. (a)		
31. (c)	32. (c)	33. (a)	34. (d)	35. (c)							

International Mathematics Olympiad - Class 10

Hints and Solutions

1. (a) Here 445 - 4 = 441; 572 - 5 = 567. 699 - 6 = 693Now we have to find H.C.F. of 441. 567. 693. **2.** (b) Given H.C.F. of 408 and 1032 = 24 and $1032m - 408 \times 5 = 24$ \Rightarrow 1032m = 24 + 20401032m = 2064 \rightarrow $m = \frac{2064}{1032} = 2$ \rightarrow 3. (c) Here 615 - 6 = 609; 963 - 6 = 957∴ H.C.F. of 609 and 957 = 87 4. (c) $5005 = 5 \times 7 \times 11 \times 13$ 5. (c) L.C.M. of 144, 180, 192 $144 = 2^4 \times 3^2$ $180 = 2^2 \times 3^2 \times 5$ $192 = 2^6 \times 3$: L C M = $2^6 \times 3^2 \times 5 = 2880$ 6. (a) L.C.M. = $\frac{\text{product of numbers}}{\text{H.C.F. of numbers}}$ $=\frac{3072}{16}=192$ 7. (c) 398 - 7 = 391; 436 - 11 = 425; 542 - 15 = 527Required number = H.C.F. of 391, 425 and 527 = 178. (a) Other number = $\frac{\text{H.C.F.} \times \text{L.C.M.}}{\text{one numbers}}$ $=\frac{145\times2175}{725}=435$ **9.** (b) L.C.M. of 35, 56, 91 = 3640 Remainder = 7Required number = 3640 + 7 = 3647**13.** (c) We have $196 = 2^2 \times 7^2$ 2 + 2 = 4**14.** (b). H.C.F. of 95 and 152 = 19**15.** (d) $\sqrt{27} \times \sqrt{3} = \sqrt{81} = 9$

17 (b) $6^n - 5^n - 6^1 - 5^1 - 1$ $6^2 - 5^2 = 36 - 25 = 11$ and so on **18.** (**b**) $324 = 2^2 \times 3^2$ **19.** (b) $576 = 2^6 \times 3^4$ 6 + 2 - 8**20** (c) Here $1225 = 5^2 \times 7^2$ \therefore Required difference = 2 - 2 = 0**21.** (a) L.C.M. of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 = 252022. (b) **23.** (a) $13915 = 5 \times 11 \times 11 \times 23$ Required difference = 23 - 5 = 18**24.** (b) H.C.F. of 210 and 55 = 5 $210 \times 5 + 55y = 5$ 55v = 5 - 1050 \Rightarrow \Rightarrow 55v = -1045 $\Rightarrow \qquad y = \frac{1045}{55} = -19$ **25.** (a) $\frac{43}{2^4 \times 5^3} = \frac{43}{16 \times 125}$ **26.** (d) Smallest prime number = 2Smallest composite number = 4 \therefore Required product = $2 \times 4 = 8$ 27. (b) $\frac{21}{2^3 \times 5^6} = \frac{21}{8 \times 125 \times 125}$ **28.** (b) Required product = $H.C.F. \times L.C.M.$ $= 81 \times 50 = 4050$ **30.** (a) L.C.M. \times H.C.F. = 306 \times 657 L.C.M. $\times 9 = 306 \times 657$ L.C.M. = $\frac{306 \times 657}{9}$ = 22338 **31.** (c) Given expression is in the form $a^2 - b^2$ $9^{2n} - 4^{2n}$ is divisible by both (9 - 4) and (9+4) i.e. 5 and 13. **33.** (a) For any natural number n, 6^n and 5^n end with 6 and 5 respectively.

35. (c) Here H.C.F. of 720 and 405 is 45

$$405)\overline{720}(1)$$

$$405$$

$$\overline{315})405(1)$$

$$315$$

$$90)315(3)$$

$$270$$

$$\overline{45})90(2)$$

$$90$$

$$\times$$
Hence required number $= \frac{720}{45} + \frac{405}{45}$

$$= \frac{1125}{45} = 25$$

Polynomial

An expression of the form $P(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$ where $a_n \neq 0$ is called a **polynomial** in *x* of degree *n*. Here $a_0, a_1, ..., a_n$ are real numbers and each power of *x* is a non-negative integer.

Example:

2x + 3 is a polynomial of degree 1.

 $x^{2} + x + 2$ is a polynomial of degree 2.

Types of Polynomial

There are many types of polynomials.

1. Linear Polynomial

A polynomial of degree one is called a linear polynomial. It is of the form ax + b, $a \neq 0$.

Example:
$$2x + 5, \sqrt{2x - 3}, x - \frac{2}{5}$$
 etc.

2. Quadratic Polynomial

A polynomial having degree 2 is called a quadratic polynomial. It is of the form $P(x) = ax^2 + bx + c$, $a \neq 0$.

Example: $x^2 + x + 2$, $3x^2 - \sqrt{2x} + 5$ etc.

3. Cubic Polynomial

A polynomial of degree 3 is called a cubic polynomial.

It is of the form $ax^3 + bx^2 + cx + d$, $a \neq 0$

Example: $x^3 - 2x^2 + 3x + 1, \sqrt{2}z^3 - z^2 + 2z + 5$

Value of a Polynomial at a given Point

If P(x) is a polynomial in x and if α is any real number then the value obtained by putting $x = \alpha$ in P(x) is called the value of P(x) at $x = \alpha$.

Example 1: If $P(x) = 2x^2 - 3x + 5$ then find P(-5) and P(3). **Solution:** We have $P(x) = 2x^2 - 3x + 5$ then $P(-5) = 2(-5)^2 - 3(-5) + 5$ = 50 + 15 + 5 = 70and $P(3) = 2(3)^2 - 3(3) + 5$ = 18 - 9 + 5 = 23 - 9 = 14.

Zeros of a Polynomial

A real number α is called a zero of the polynomial P(x) if $P(\alpha) = 0$.

Example 2: If
$$P(x) = x^2 - 2x - 3$$
, find the zeros of polynomial.
Solution: Given $P(x) = x^2 - 2x - 3$
 $= x^2 - 3x + x - 3$
 $= x(x - 3) + 1(x - 3)$
 $= (x + 1)(x - 3)$
then $P(3) = 3^2 - 2(3) - 3 = 9 - 6 - 3$
 $= 9 - 9 = 0$
 $P(-1) = (-1)^2 - 2(-1) - 3$
 $= 1 + 2 - 3 = 0$

So, 3 and -1 are zeros of the polynomial.

Relation between Zeros and Coefficients of a Quadratic Polynomial

If α and β are the zeros of $P(x) = ax^2 + bx + c$, $a \neq 0$ then

$$\alpha + \beta = \frac{-b}{a}$$

and $\alpha\beta = \frac{c}{a}$

A quadratic polynomial whose zeros are α and β is given by $x^2 - (\alpha + \beta)x + \alpha\beta$. **Example 3:** Find the zeros of the polynomial.

$$f(x) = x^{2} + 7x + 12.$$
Solution: We have $f(x) = x^{2} + 7x + 12$

$$= x^{2} + 4x + 3x + 12$$

$$= x (x + 4) + 3 (x + 4)$$

$$= (x + 4) (x + 3)$$

$$f(x) = 0$$

$$\Rightarrow (x + 4) (x + 3) = 0$$

$$\Rightarrow x + 4 = 0 \Rightarrow x = -4$$
or
$$x + 3 = 0 \Rightarrow x = -3$$
Find the sum and product of zeros of the polynomial $2x^{2} + 5x - 12$.
We have $f(x) = 2x^{2} + 5x - 12$
then sum of zeros $= \frac{-5}{2}$
and product of zeros $= \frac{-12}{2} = -6.$
Example 5:
Find the quadratic polynomial the sum and product of whose zeros are -5 and 6 respectively.
Solution: Given sum of zeros $= -5$
and product of zeros $= 6$
then required polynomial $= x^{2} - (-5)x + 6 = x^{2} + 5x + 6.$

Example 6: Find the quadratic polynomial whose zeros are $\frac{2}{3}$ and $\frac{-1}{4}$ **Solution:** Here sum of zeros $= \frac{2}{3} - \frac{1}{4} = \frac{8-3}{12}$ $= \frac{5}{12}$ and product of zeros $= \frac{2}{3} \times \frac{-1}{4} = \frac{-1}{6}$. Required quadratic polynomial $= x^2 - \left(\frac{5}{12}\right)x + \left(-\frac{1}{6}\right)$ $= x^2 - \frac{5}{12}x - \frac{1}{6} = 12x^2 - 5x - 2$.

Relation between the Zeros and Co-efficients of a Cubic Polynomial

If $P(x) = ax^3 + bx^2 + cx + d$, $a \neq 0$ is a cubic polynomial.

and $\alpha,\,\beta$, γ are the zeros of the polynomial, then

1. $\alpha + \beta + \gamma = \frac{-b}{a}$,

2.
$$\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$$

3.
$$\alpha\beta\gamma = \frac{-d}{a}$$

A cubic polynomial whose zeros are α , β , γ is given by

$$x^3 - (\alpha + \beta + \gamma)x^2 + (\alpha\beta + \beta\gamma + \gamma\alpha)x - \alpha\beta\gamma$$

Example 7: Find a cubic polynomial whose zeros are -2, -3, and -1.

Solution: The required polynomial is

$$[x - (-2)] [x - (-3)] [x - (-1)]$$

= (x + 2) (x + 3) (x + 1)
= (x² + 3x + 2x + 6) (x + 1)
= (x² + 5x + 6) (x + 1)
= x³ + x² + 5x² + 5x + 6x + 6
= x³ + 6x² + 11x + 6

Example 8: Find a cubic polynomial whose zeros are α , β , γ such that $\alpha + \beta + \gamma = 4$, $\alpha\beta + \beta\gamma + \gamma\alpha = 1$, $\alpha\beta\gamma = -6$.

Solution:

$$x^{3} - (\alpha + \beta + \gamma)x^{2} + (\alpha\beta + \beta\gamma + \gamma\alpha)x - \alpha\beta\gamma$$
$$= x^{3} - 4x^{2} + x - (-6)$$
$$= x^{3} - 4x^{2} + x + 6$$

Division Algorithm for Polynomials

Division Algorithm: It states that given any polynomial p(x) and any non-zero polynomial g(x), there are polynomials q(x) and r(x) such that

p(x) = g(x)q(x) + r(x)where r(x) = 0, or degree r(x) < degree g(x).

Polynomials

(19)

Example 9: What is the quotient, when $2x^2 + x - 15$ is divided by x + 3? **Solution:**

$$x+3)2x^{2} + x - 15(2x - 5)$$

$$2x^{2} + 6x$$

$$5x - 15$$

$$5x - 15$$

$$5x - 15$$

$$-x - 15$$
∴ Outient = 2x - 5

Example 10: What is the dividend if divisor is $x^2 - 2x + 3$, quotient is 5x - 3 and remainder -5? Solution:

Dividend = Divisor × quotient + Remainder = $(x^2 - 2x + 3)(5x - 3) + (-5)$ = $5x^3 - 3x^2 - 10x^2 + 6x + 15x - 9 - 5$ = $5x^3 = 13x^2 + 21x - 14$

Multiple Choice Questions

- 1. What are the zeros of $abx^2 + (b^2 ac)x bc$?
 - (a) $-\frac{b}{a}, \frac{c}{b}$ (b) $\frac{b}{c}, \frac{a}{b}$ (c) $-\frac{b}{c}, \frac{a}{b}$ (d) None of these
- 2. If *a* and *b* are the zeros of $ax^2 + bx + c$, find the value of $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$.
 - (a) $\frac{3abc-b^3}{a^2c}$ (b) $\frac{b^3-abc}{ac}$ (c) $\frac{3abc+b^3}{ac^2}$ (d) $\frac{3abc+b^3}{ac^2}$
- 3. If α , β are the zeros of the polynomial $x^2 5x + P$ such that $\alpha \beta = 1$. What is the value of *P*?
 - (a) $\frac{1}{6}$ (b) 6 (c) -6 (d) 3
- 4. If the sum of squares of zeros of the quadratic polynomial $P(x) = x^2 8x + k$ is 40. What is the value of *k*?

(a) 12 (b) 16 (c) 18 (d) 8

5. If α , β are the zeros of quadratic polynomial $6x^2 + x - 2$, find the value of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$.

(a)
$$\frac{12}{25}$$
 (b) $\frac{-25}{12}$
(c) $\frac{1}{12}$ (d) $\frac{1}{25}$

6. What must be subtracted from $8x^4 + 14x^3 - 2x^2 + 7x - 8$ so that the resulting polynomial is exactly divisible by $4x^2 + 3x - 2$?

(a)
$$4x - 10$$
 (b) $14x - 10$
(c) $2x - 10$ (d) $14x + 10$

7. Find the other two zeros of the polynomial $2x^4 - 3x^3 - 3x^2 + 6x - 2$ if its two roots are $\sqrt{2}$ and $-\sqrt{2}$.

(a) 1 and
$$\frac{1}{2}$$
 (b) -1 and $\frac{1}{2}$
(c) 2 and 1 (d) -2 and 1

8. What is the cubic polynomial in which the sum, sum of the products of its zeros taken at a time and product of its zeros as 2, -7, -14 respectively?

(a)
$$k(x^3 - 2x^2 - 7x + 14)$$

(b) $k(x^3 - 2x^2 + 8x - 14)$
(c) $k(x^3 + 2x^2 - 7x - 4)$
(d) $k(x^3 - x^2 - x - 14)$

- 9. Find the zeros of the polynomial $x^3 5x^2 16x + 80$ if two zeros are equal in magnitude but opposite in sign.
 - (a) 4, -4, 5 (b) 5, -5, 4(c) 4, -4, 7 (d) 5, -5, 6
- 10. If the product of two zeros of the polynomial $2x^3 + 6x^2 4x + 9$ is 3 then what is its third zero?
 - (a) $\frac{3}{2}$ (b) $\frac{3}{2}$ (c) $\frac{1}{2}$ (d) $-\frac{3}{2}$
- **11.** Find a cubic polynomial whose zeros are α , β , γ such that $\alpha + \beta + \gamma = 6$, $\alpha\beta + \beta\gamma + \gamma\alpha = -1$ and $\alpha\beta\gamma = -30$.
 - (a) $x^3 6x^2 x + 30$ (b) $x^3 + 6x^2 + x - 30$ (c) $x^3 - x^2 - 6x + 30$ (d) None of these
- 12. If α , β , γ are the zeros of the polynomial $2x^3 + x^2 13x + 6$. What is the value of $\alpha\beta\gamma$?
 - (a) 3 (b) $-\frac{1}{2}$ (c) -3 (d) $-\frac{7}{2}$
- **13.** Find the polynomial which when divided by $-x^2 + x 1$ gives a quotient x 2 and remainder 3.
 - (a) $-x^3 + 3x^2 3x + 5$ (b) $-x^3 - 3x^2 - 3x - 5$ (c) $x^3 - 3x^2 + 3x - 5$ (d) None of these
- **14.** What must be added to $f(x) = 4x^4 + 2x^3 2x^2 + x 1$ so that the resulting polynomial is divisible by $g(x) = x^2 + 2x 3$?
 - (a) 61x 65 (b) -61x + 65(c) -61x - 65 (d) None of these
- **15.** If the polynomial $6x^4 + 8x^3 + 17x^2 + 21x + 7$ is divided by another polynomial $3x^2 + 4x + 1$, the remainder comes out to be ax + b. What is the value of *a* and *b*?

(a) a = 1, b = 2(b) a = 2, b = 1(c) a = -2, b = 1(d) a = -1, b = -2 **16.** What is the cubic polynomial whose zeros are α , β , γ such that $\alpha + \beta + \gamma = 4$. $\alpha\beta\gamma = -6$ and $\alpha\beta + \beta\gamma + \gamma\alpha = 1$?

(a)
$$x^{3}-4x^{2}+x+6$$

(b) $x^{3}-2x^{2}-x+6$
(c) $x^{3}-4x^{2}+4x-6$
(d) $x^{3}-4x^{2}-x-6$

- **17.** Find a cubic polynomial whose roots are -2, -3, and -1.
 - (a) $x^3 6x^2 + 9x + 6$ (b) $x^3 + 6x^2 + 11x + 6$ (c) $x^3 + 6x^2 - 11x - 6$ (d) None of these
- **18.** Which quadratic polynomial has sum of whose zeros is -5 and product of its zero is -12?
 - (a) $x^2 + 5x 12$ (b) $x^2 5x + 12$ (c) $x^2 - 5x + 6$ (d) $x^2 - 10x + 12$
- **19.** If divisor is $2-x+x^2$ and quotient is (3x-1) then what is the dividend if dividend is completely divisible?
 - (a) $3x^3 2x^2 7x + 2$ (b) $3x^3 - 4x^2 + 7x - 2$ (c) $3x^3 - 4x^2 - 7x + 2$
 - (d) None of these
- **20.** What are the zeros of $x^2 2x 3$? (a) 1, -3 (b) -3, -1 (c) 3, 1 (d) 3, -1
- 21. Find the quadratic polynomial whose zeros are $\frac{2}{3}$ and $-\frac{1}{4}$. (a) $\frac{1}{12}(4x^2 - 5x - 2)$ (b) $\frac{1}{12}(12x^2 - 5x - 2)$ (c) $\frac{1}{12}(12x^2 - 2x + 5)$ (d) $\frac{1}{12}(12x^2 + 5x - 2)$

Polynomials

- **22.** If α , β are zeros of $2x^2 + 5x 10$ then what is the value of $\alpha\beta$?
 - (a) -5 (b) 5 (c) $\frac{2}{5}$ (d) $\frac{-5}{2}$

23. The product of zeros of the polynomial $x^3 + 4x^2 + x - 6$ is

(a)
$$-4$$
 (b) 4 (c) -6 (d) 6

- 24. If l, m, n are the zeros of polynomial $x^{3} - px^{2} + dx - r$ then what is the value of $\frac{1}{lm} + \frac{1}{mn} + \frac{1}{nl}$? (a) $\frac{p}{r}$ (b) $\frac{r}{p}$ (c) $-\frac{p}{r}$ (d) $\frac{-r}{p}$
- **25.** If one zero of the polynomial $(K^2+4)x^2+13x+4K$ is reciprocal of the other, what is the value of *K*?
 - (a) 2 (b) -2 (c) 4 (d) -4
- 26. If α , β are the zeros of a polynomial such $\alpha + \beta = -6$ and $\alpha\beta = -4$, then what is the polynomial?
 - (a) $x^2 + 6x 4$ (b) $x^2 6x + 4$ (c) $x^2 - 6x$ (d) None of these

27. If $f(x) = 4\sqrt{3}x^2 + 5x - 2\sqrt{3}$. If α and β be the zeros of the polynomial. What is the product of zeros?

(a)
$$\frac{1}{2}$$
 (b) $-\frac{1}{2}$
(c) $\frac{-5}{4}$ (d) $\frac{-5}{4\sqrt{3}}$

28. If divisor is $x-1-x^2$ and dividend is $3x^2-x^3-3x+5$, then what is the remainder? (a) x-3 (b) 3 (c) -3 (d) x+3

29. Find the quotient if dividend is $30x^4 + 11x^3 - 82x^2 - 12x + 48$ and divisor is $3x^2 + 2x - 4$.

(a) $10x^2 + 3x - 12$ (b) $10x^2 - 3x - 12$ (c) $10x^2 - 6x - 6$ (d) None of these

30. If α , β are zeros of the polynomial $x^2 - px + d$, then what is the value of $\frac{1}{\alpha} + \frac{1}{\beta}$? (a) $\frac{p}{d}$ (d) $\frac{d}{p}$

(c) 1 (d)
$$-\frac{p}{d}$$

Answer Key											
1. (a)	2. (a)	3. (b)	4. (a)	5. (b)	6. (b)	7. (a)	8. (a)	9. (a)	10 (d)		
11. (a)	12. (c)	13. (a)	14. (b)	15. (a)	16. (a)	17. (b)	18. (a)	19. (b)	20. (d)		
21. (b)	22. (a)	23. (d)	24. (a)	25. (a)	26. (a)	27. (b)	28. (b)	29. (b)	30. (a)		

Hints and Solutions

1. (a) We have
$$abx^2 + (b^2 - ac)x - bc$$

$$x = \frac{-(b^2 - ac) \pm \sqrt{(b^2 - ac)^2 + 4ab^2c}}{2ab}$$

$$x = \frac{ac - b^2 \pm \sqrt{(b^2 + ac)^2}}{2ab}$$

$$x = \frac{ac - b^2 \pm b^2 + ac}{2ab}$$

$$x = \frac{ac - b^2 \pm b^2 + ac}{2ab}; \frac{ac - b^2 - b^2 - ac}{2ab}$$

$$x = \frac{2ac}{2ab}; \frac{-2b^2}{2ab}$$

$$x = \frac{c}{b}; \frac{-b}{a}$$
The zeros of the given polynomial are

The zeros of the given polynomial are $\frac{c}{b}$ and $-\frac{b}{a}$

2. (a) Given α and β are the zeros of

$$ax^{2} + bx + c$$

$$\therefore \alpha + \beta = \frac{-b}{a}, \alpha\beta = \frac{c}{a}$$

$$\frac{\alpha^{2}}{\beta} + \frac{\beta^{2}}{\alpha} = \frac{\alpha^{3} + \beta^{3}}{\alpha\beta}$$

$$= \frac{(\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta)}{\alpha\beta}$$

$$= \frac{\left(\frac{-b}{a}\right)^{3} - \frac{3c}{a}\left(\frac{-b}{a}\right)}{\frac{c}{a}}$$

$$= \frac{-\frac{b^{3}}{a^{3}} + \frac{3bc}{a^{2}}}{\frac{c}{a}} = \frac{-\frac{b^{3} + 3abc}{a^{3}}}{\frac{c}{a}}$$

$$= \frac{3abc - b^{3}}{a^{3}} \times \frac{a}{c} = \frac{3abc - b^{3}}{a^{2}c}$$

3. (b) Here
$$\alpha$$
, β are the zeros of $x^2 - 5x + P$
then $\alpha + \beta = 5$...(1)
and $\alpha\beta = P$
 $\alpha - \beta = 1$...(2)
Solving (1) and (2) we get
 $2\alpha = 6 \implies \alpha = 3$
and $\beta = 5 - 3 = 2$
 $\therefore \alpha\beta = P = (3) (2) = 6$
4. (a) $P(x) = x^2 - 8x + k$
If α , and β are its zeros
then $\alpha + \beta = 8$, $\alpha\beta = k$
and $\alpha^2 + \beta^2 = 40$
 $\Rightarrow (\alpha + \beta)^2 - 2\alpha\beta = 8^2 - 2k$
 $\Rightarrow 40 = 64 - 2k$
 $\Rightarrow 2k = 24$
 $\Rightarrow k = 12$
5. (b) Given $6x^2 + x - 2$
If α , β are its zeros
then $\alpha + \beta = \frac{-1}{6}$, $\alpha\beta = \frac{-2}{6} = -\frac{1}{3}$
Now $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta}$
 $= \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$
 $= \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$
 $= \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$
 $= \frac{(\frac{-1}{6})^2 - 2(\frac{-1}{3})}{-\frac{1}{3}}$
 $= \frac{\frac{1}{36} + \frac{2}{3}}{-\frac{1}{3}} = \frac{\frac{1+24}{36}}{-\frac{1}{3}}$
 $= \frac{25}{36} \times \frac{-3}{1} = -\frac{25}{12}$

Polynomials

6. (b) Here

$$4x^{2} + 3x - 2) 8x^{4} + 14x^{3} - 2x^{2} + 7x - 8(2x^{2} + 2x - 1) + \frac{-8x^{4} \pm 6x^{3} \mp 4x^{2}}{8x^{3} + 2x^{2} + 7x} + \frac{-8x^{3} \pm 6x^{2} \mp 4x}{-4x^{2} + 11x - 8} + \frac{\pi 4x^{2} \mp 3x \pm 2}{14x - 10}$$

- \therefore 14*x* 10 must be subtracted.
- 7. (a) $2x^4 3x^3 3x^2 + 6x 2$

Let the other roots be α and $\beta.$

Sum of the roots =
$$\sqrt{2} + (-\sqrt{2}) + \alpha + \beta = \frac{3}{2}$$

$$\alpha + \beta = \frac{3}{2} \qquad \dots (1)$$

Product of roots = $\frac{-2}{2} = -1$

$$\sqrt{2} + (-\sqrt{2})\alpha\beta = -1 \Rightarrow \alpha\beta = \frac{1}{2} \qquad \dots (2)$$
$$(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta$$
$$= \left(\frac{3}{2}\right)^2 = 4\alpha\beta = \frac{9}{4} - \frac{4}{2} = \frac{1}{4}.$$
$$\alpha - \beta = \pm \frac{1}{2} \qquad \dots (3)$$

From equation (1) and (3)

 $\alpha = 1, \beta = \frac{1}{2} \text{ or } \beta = 1, \alpha = \frac{1}{2}$

8. (a) Given $\alpha + \beta + \gamma = 2 = \frac{-b}{a} \Rightarrow b = -2a$

$$\alpha\beta + \beta\gamma + \gamma\alpha = -7 = \frac{c}{a} \Longrightarrow c = -7a$$
$$\alpha\beta\gamma = -14 = \frac{-d}{a} \Longrightarrow d = 14a$$
$$b: c: d = -2: -7: 14$$
Cubic polynomial is
$$k(r^3 - 2r^2 - 7r + 14)$$

9. (a) Let the zeros are
$$\alpha$$
, $-\alpha$, β .
 $\therefore \alpha + (-\alpha) + \beta = -\left(\frac{-5}{1}\right) = 5$
 $\Rightarrow \beta = 5$
and $(\alpha) (-\alpha) (\beta) = \frac{-80}{1}$
 $\Rightarrow -\alpha^2\beta = -80 \Rightarrow \alpha^2\beta = 80$
 $\Rightarrow \alpha^2 = \frac{80}{\beta} = \frac{80}{5} = 16$
 $\Rightarrow \alpha = \pm 4$
The zeros are 4, -4, 5.

10. (d) If α and β are two zeros then $\alpha\beta = 3$ Let third root be γ .

$$\alpha\beta\gamma = \frac{-9}{2}$$
$$\Rightarrow \quad 3\gamma = \frac{-9}{2}$$
$$\Rightarrow \quad \gamma = -\frac{9}{2 \times 3} = \frac{-3}{2}$$

- 11. (a) Given $\alpha + \beta + \gamma = 6$ $\alpha\beta + \beta\gamma + \gamma\alpha = -1$ $\alpha\beta\gamma = -30$ The cubic polynomial is $P(x) = x^3 - (\alpha + \beta + \gamma)x^2 + (\alpha\beta + \beta\gamma + \gamma\alpha)x$ $- \alpha\beta\gamma$ $= x^3 - 6x^2 - x - (-30)$ (substituting the given values) $= x^3 - 6x^2 - x + 30$
- 12. (c) The given polynomial is $2x^3 + x^2 - 13x + 6$ α, β, γ be its zeros

$$\therefore \quad \alpha\beta\gamma = \frac{-d}{a} = \frac{-6}{2} = -3$$

13. (a)

Polynomial =
$$(-x^{2} + x - 1)(x - 2) + 3$$

= $-x^{3} + 2x^{2} + x^{2} - 2x - x + 2 + 3$
= $-x^{3} + 3x^{2} - 3x + 5$