Ayhan Uzun

Elektrische Antriebe im Maschinenbau

Energieeffizienz, Sanftlauf, drehzahlvariable und synchrone Steuerungen

Diplomarbeit

BEI GRIN MACHT SICH IHR WISSEN BEZAHLT

- Wir veröffentlichen Ihre Hausarbeit,
 Bachelor- und Masterarbeit
- Ihr eigenes eBook und Buch weltweit in allen wichtigen Shops
- Verdienen Sie an jedem Verkauf

Jetzt bei www.GRIN.com hochladen und kostenlos publizieren

Fachhochschule Köln Fachbereich Konstruktionstechnik Antriebs- und Fördertechnik

Diplomarbeit

von

Ayhan Uzun

Elektrische Antriebe im Maschinenbau – Energieeffizienz, Sanftlauf, drehzahlvariable und synchrone Steuerungen

Aufgabenstellung

Diplomaufgabe

für Herrn cand. Ing. Uzun

Elektrische Antriebe im Maschinenbau – Energieeffizienz, Sanftlauf, drehzahlvariable und synchrone Steuerungen

Die Diplomaufgabe hat folgende Schwerpunkte:

1.) Ermittlung des Standes der Technik: Motordaten

Typische eingesetzte Elektromotorenarten und –konfigurationen. Recherche der Kennwerte der Baureihen verschiedener Hersteller. Aufbau einer herstellerneutralen Motortabelle. Abgleich mit der im Lehrgebiet verwendeten Motortabelle.

Hierzu Auswertung von Fachliteratur einschl. Fachaufsätzen und Herstellerangaben.

2.) Ermittlung des Standes der Technik: Anlaufsteuerungen

Anlaufsteuerungen (Sanftanlauf) für verschiedene Einsatzfälle bei besonderer Berücksichtigung der Stetigförderung (Förderbänder, Fahrtreppen, Ventilatoren, Pumpen, u.ä.), der Fahr- und Hubwerksantriebe. Schematische Einteilung. Vergleich mit Anfahrkupplungen. Betrachtung des Leistungsbedarfs. Auswahlkriterien und Dimensionierungsschritte. Kostengesichtspunkte. Anwendungsbeispiele nach Herstellerangaben.

Hierzu Auswertung von Fachliteratur einschl. Fachaufsätzen und Herstellerangaben.

3.) Ermittlung des Standes der Technik: Drehzahlvariable Antriebe

Drehzahlvariable Antriebe für verschiedene Einsatzfälle der Automatisierungs- und Fördertechnik. Synchronlauf und Steuerung von Bewegungsabläufen. Schematische Einteilung. Auswahlkriterien und Dimensionierungsschritte. Kostengesichtspunkte. Anwendungsbeispiele nach Herstellerangaben.

Hierzu Auswertung von Fachliteratur einschl. Fachaufsätzen und Herstellerangaben.

4.) Ermittlung des Standes der Technik: Energiesparmotoren

Untersuchung der gängigen Wirkungsklassen, Vergleiche mit Standardmotoren und Amortisierung, Schematische Einteilung, Auswahlkriterien und Dimensionierungsschritte. Kostengesichtspunkte. Anwendungsbeispiele nach Herstellerangaben.

Hierzu Auswertung von Fachliteratur einschl. Fachaufsätzen und Herstellerangaben.

5.) Die Arbeit ist nachvollziehbar zu dokumentieren.

Inhaltsverzeichnis

1	Grundlagen der Asynchronmaschinen	1
	1.1 Stand der Technik und Marktsituation	1
	1.2 Wirkungsweise und Aufbau	5
	1.2.1 Bauarten	6
	1.2.1.1 Kurzschlussläufer	6
	1.2.1.2 Schleifringläufer	7
	1.2.2 Bauformen.	8
	1.2.3 Motorkonfigurationen	9
	1.2.3.1 Bremsmotoren	10
	1.2.3.2 Getriebemotoren	10
	1.2.3.3 Umrichtermotoren.	11
	1.2.3.4 Asynchron-Servomotoren	11
	1.2.4 Baugrößen (Achshöhe und Baulänge)	12
	1.3 Motorkühlung und Motorschutz.	14
	1.3.1 Motorschutz.	14
	1.3.2 Schutzart.	14
	1.4 Betriebsverhalten und Kenngrößen.	15
		15
	1.4.1 Drehzahl und Schlupf	15
	1.4.2 Drehmoment.	
	1.4.3 Leistung.	16
	1.4.4 Verluste und Wirkungsgrad	18
	1.5 Herstellerneutrale Motortabelle	19
	1.5.1 Normen	19
	1.5.1.1 Normzahlen	19
	1.5.1.2 Toleranzen.	19
	1.5.2 Herstellerneutrale Tabelle für Käfigläufer	20
	1.5.2.1 Herstellertabellen	22
	1.5.2.2 Konstruktion der herstellerneutralen Tabelle	24
	1.5.2.3 Charakteristische Kennlinien	31
	1.5.3 Herstellerneutrale Tabelle für Schleifringläufer	34
	1.5.3.1 Alte Motortabelle aus der Vorlesung	34
	1.5.3.2 Betriebsarten.	36
	1.5.3.3 Relative Einschaltdauer ED	37
	1.5.3.4 Konstruktion der herstellerneutralen Tabelle	38
	1.5.3.5 Charakteristische Kennlinien	42
	1.6 Wachstumsgesetze	45
2 An-	und Auslaufsteuerungen von Asynchronmaschinen	46
	2.1 Zeitkonstanten bei Antrieben.	46
	2.1.2 Hochlaufzeitkonstante	47
	2.1.3 Übergangsvorgänge	49
	2.2 Anlaufverfahren - Konventioneller Betrieb (ohne Elektronik)	50
	2.2.1 Stromverdrängungsläufer	51
	2.2.2 Veränderung der Streuung	51
	2.2.3 Direktschalten.	52
	2.3 Konventionelle elektrische Anlaufverfahren (Hochlauf)	52
		53
	2.3.1 Stern-Dreieck-Anlauf (Y-Δ).	53 54
	2.3.2 Symmetrische Anlassvorwiderstände.	
	2.3.3 Anlasstransformator.	55 57
	2.4 Sanftanlasser	57
	2.4.1 Aufbau und Betriebsverhalten von Sanftanlaufgeräten	57

2.5 Schweranlauf mit Anlaufkupplung	60
2.6 Bremsschaltungen	63
2.6.1 Generatorbetrieb	63
2.6.2 Gegenstrombremsen	64
2.6.3 Gleichstrombremsen (DC-Bremsen)	65
2.7 Dimensionierung von Antriebsmaschinen	66
2.7.1 Stationäre Kennlinien von Antriebsmaschinen	66
2.7.2 Stationäre Kennlinien von Arbeitsmaschinen	67
2.7.2.1 Konstante Antriebsleistung	67
2.7.2.2 Konstantes Lastmoment	68
2.7.2.3 Linear ansteigendes Lastmoment	69
2.7.2.4 Quadratisch ansteigendes Lastmoment	69
2.7.3 Stabilität des Arbeitspunktes	70
3 Drehzahlvariable Asynchronmaschinen	72
3.1 Änderung der Polpaarzahl	72
3.1.1 Getrennte Wicklungen (p ₁ und p ₂)	72
3.1.2 Dahlanderschaltung (2:1)	73
3.1.3 Polamplitudenmodulation (PAM)	74
3.2 Vergrößerung des Schlupfes (Schlupfsteuerung)	75
3.3 Spannungsabsenkung bei Wechselstrombetrieb	76
3.4 Drehzahlvariabler Betrieb mit Leistungselektronik	77
3.4.1 Stromrichter und ihre Bauteile (Halbleiterschalter)	77
3.4.2 Betrieb am Drehstromsteller	78
3.4.2.1 Symmetrische Stellerschaltungen	79
3.4.2.2 Anlaufsteuerung	80
$3.4.2.3 \sqrt{3}$ -Schaltung	81
3.4.2.4 Sanftanlauf mit 2-Strang-Geräten	81
3.4.2.5 Betrieb am Steller mit variabler Drehzahl	82
3.4.3 Betrieb am Frequenzumrichter	84
3.4.3.1 Betrieb variabler Speisefrequenz	87
3.4.3.2 Betriebsbereiche: Konstantfluss- und Feldschwächbereich	88
3.4.3.3 Spannungsstellbereich – Konstantflussbereich	90
3.4.3.4 Feldstellbereich – Feldschwächbereich	91
3.4.4 Steuer- und Regelverfahren sowie besondere Parameter	91
3.4.4.1 U/f-Kennliniensteuerung	91
3.4.4.2 Feldorientierte Regelung (FOR)	96
3.5 Bewegungssteuerungen und Synchronlauf (Motion Control)	99
3.5.1 Motion Control in der Automatisierung	100
3.5.2 Elektronische Lösungen	101
3.5.2.1 Gleichlauf	101
3.5.2.2 Elektronisches Getriebe	101
3.5.2.3 Tänzerregelung	102
3.5.2.4 Kurvenscheibe	102
3.5.3 Beispiele aus der Praxis	102
3.5.3.1 Abfüllanlagen	102
3.5.3.2 Zugregelung	103
3.5.3.3 Verpackungsmaschinen	103
3.5.3.4 Sortieranlagen	104
3.6 Dimensionierung drehzahlvariabler Asynchronmaschinen	104
3.6.1 Ermittlung der Auslegungsgrößen für Frequenzumrichter	105
3.6.2 Wahl des Frequenzumrichters.	106
3.7 Demag Antriebsauslegungsprogramm Caldrive	108 108
3.7.1 Projektierungsdaten.	100

3.7.2 Lastdaten	110
3.7.3 Rad und Fahrbahn	111
3.7.4 Besonderes.	112
3.7.5 Datenbank.	113
3.7.6 Auswahl-Rad	114
3.7.7 Auswahl Getriebemotor	115
4 Energieeffiziente Asynchronmaschinen	116
4.1 Motoren für die EU-Motorwirkungsgradklassen	117
4.2 Möglichkeiten der Energieeinsparung	118
4.2.1 Einzelverluste	118
4.2.2 Statorstromwärme	120
4.2.3 Rotorstromwärme	120
4.2.4 Energieeinsparung durch Drehzahlregelung	123
4.2.4.1 Stoffmengenregelung	123
4.3 Amortisationszeit	126
4.3.1 Software zur Ermittlung der Amortisierungszeit	127
4.4 Kriterien für den Einsatz von Energiesparmotoren	130
5 Zusammenfassung	131
6 Anhang	132
6.1 Formelzeichen	132
6.1.1 Indizes	132
6.2 Literaturverzeichnis	133

1 Grundlagen der Asynchronmaschinen

1.1 Stand der Technik und Marktsituation

Elektrische Antriebe sind heute wichtige und bestimmende Komponenten vieler Maschinen und Anlagen. Dabei teilen sich die Antriebe in verschiedene Varianten auf. Zu einem hohen Prozentsatz (80%) sind es einfache Antriebe mit festen Betriebsdrehzahlen. Immer häufiger nehmen jedoch die anspruchsvolleren Antriebe zu, die in weiten Bereichen drehzahlvariabel arbeiten. Der Markt fordert kostengünstige, robuste und wartungsarme Lösungen. Dadurch wurde der bewährte Gleichstromantrieb bei Neukonstruktionen im betrachteten Leistungsbereich zu Gunsten des Drehstromantriebs weitgehend verdrängt. Dies zeigen die Prozentzahlen des Diagramms in Bild 1.1 sehr deutlich.

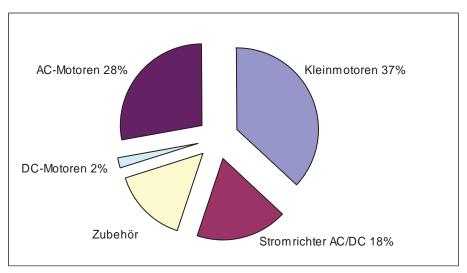


Bild 1.1: Produktionsanteile elektrischer Antriebe (ZVEI)

Betrachtet man die Verteilung der Stückzahlen auf die Leistungsklassen, die die statistische Erfassung des ZVEI vorgibt, so erkennt man, dass die großen Stückzahlen im Leistungsbereich von 750 W...7,5 kW liegen.

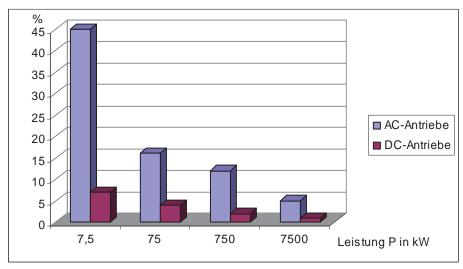


Bild 1.2: Marktanteile in den Leistungsklassen von AC- und DC-Antrieben (ZVEI)

Weitere Untersuchungen haben ergeben, dass 93% der Antriebe in die Leistungsklasse bis 7,5 kW und ca. nur 0,6% in die über 75 kW einzuordnen sind. Aus diesem Grund beschränken sich die Ausführungen weitgehend auf den oben genannten Leistungsbereich mit den hohen Stückzahlen. Um die vielfältigen Antriebsaufgaben zu erfüllen, werden 4 Arten von elektrischen Antrieben eingesetzt (Bild 1.3):

- direkt geschaltete Antriebe mit festen Betriebsdrehzahlen (Festdrehzahlantriebe),
- solche mit überwiegend festen Betriebsdrehzahlen, die zum Anlassen über Schalter oder Schütze sowie oft über Vorschaltelemente geschaltet werden,
- solche, die sanft starten und stillsetzen sowie
- solche mit überwiegend variablen Betriebsdrehzahlen, die zum Anlauf oder im Betrieb über elektronische Stellglieder gestellt oder geregelt betrieben werden. [1]

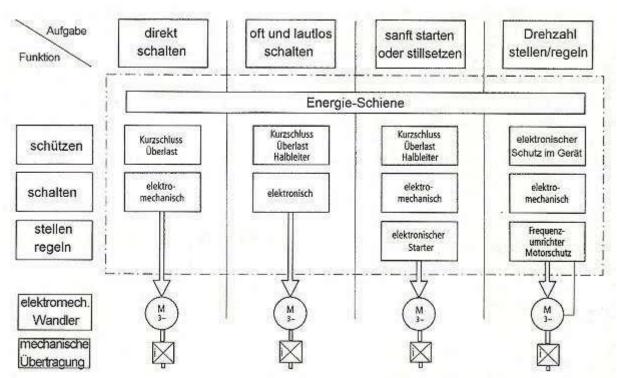


Bild 1.3: Antriebe mit fester und variabler Drehzahl [2]

Als elektronische Stellglieder zwischen Netz und elektrische Maschine werden abhängig von der entsprechenden Aufgabe Drehstromsteller oder Frequenzumrichter eingesetzt.

Zur Klassifizierung teilt man die Antriebe ein in Bewegungs- oder Positionierantriebe, zu denen auch die hochdynamischen Servoantriebe zählen. Zur Verdeutlichung zeigt folgende Tabelle hierzu einige ausgeführte Beispiele.

	Auswahl typischer Anwendungsfälle		
Maschinenart	Einsatzfall	Antriebsart *	Eigenschaften
Baumwoll-Spinnmaschine	Ersatz einer mechanischen	В	1)elektrische Maschine
	Kopplung		2)Netzausfallerkennung
			3)Busvernetzung
Regalförderfahrzeuge	Schienenfahrzeuge	P	1)Drehmomentkopplung
			mit Drehzahlklammerung
			2)digitale Sollwertübertragung
			(Leitfrequenz)
Verpackungsmaschinen	Positionierantrieb	P	1)Drehzahlregler mit geringer
			Zykluszeit (250 μs)
			2)Encordenachbildung
Ablängeinheit hinter Extruder	Schneiden auf Marke oder	P	1)Leitfrequenzkopplung
_	Länge		2)Tourch-Probe-Eingang
			3)Schnittpunktberechnung
			mit Funktionsblöcken
Kunststoff-Fasermaschinen	Materialverstreckung	В	1)elektrische Getriebe mit
			online veränderbaren Getriebe
			faktoren
			2)Motorpotifunktion
Pumpstation für Wasserversorgung	Pumpantrieb für Füllstands-	В	1)Füllstandsregelung
	regelung		2)Mindestdrehzahl
Holzbearbeitungsmaschinen	Lüfterantrieb für Spanabsau-	В	1)Druckregelung
•	gung		2)Fangschaltung
Drahtziehmaschinen	Wickeltrieb	В	1)Tänzerlagerregelung
			2)Liniengeschwindigkeit- und
			Druckmesserbewertung
			3)Nachlaufleger
Fördereinrichtungen	Kettenabtrieb	В	1)Drehmomentregelung
Č			2)Drehzahlbegrenzung
Spinnradmaschinen (Kardenmaschinen)	Walzenantrieb	В	1)Netzausfallerkennung
·			2)Fangschaltung

Tabelle 1.1: Verschiedene Antriebsarten mit typischen Lastfällen;

Bewegungsantriebe finden ein breites Einsatzfeld in de Industrie, in der Gebäudetechnik und im Haushaltsbereich. Dabei überwiegen bei den eingesetzten elektrischen Maschinen eindeutig die Asynchronmaschinen mit Käfigläufer in Drehstrom- oder Wechselstromausführung. Letztere Variante ist besonders im unteren Leistungsbereich (< 2 kW) sehr stark vertreten; dort arbeiten jedoch nur wenige Antriebe drehzahlvariabel. [2]

Im speziellen Segment der hochdynamischen Positionier- oder Servoantriebe sind es die Antriebe mit Synchron- und EK-Maschinen (elektronisch kommutierte Gleichstrommaschinen) neben Lösungen mit angepassten Asynchronmaschinen. Diese Antriebe arbeiten alle drehzahlvariabel und werden von Umrichtern gespeist.

Getriebemotoren mit Asynchronmaschine sind in vielfältiger Ausführung im Einsatz. Sie wurden zur Mechatronik weiterentwickelt und haben so einen hohen Reifegrad erreicht. Diese mechatronischen Antriebe werden als dezentrale intelligente Antriebsmodule eingesetzt.

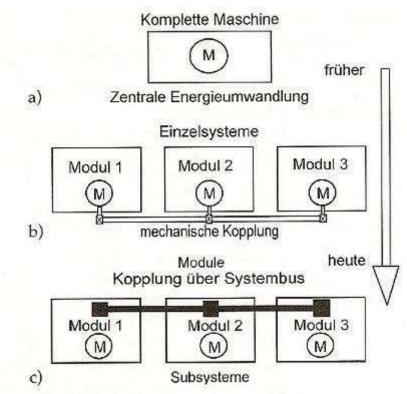


Bild 1.4: Wandel in der Antriebstechnik [3]

Antriebsmodule sind konstruktive Einheiten, die aus dem angepassten Getriebemotor mit integriertem Frequenzumrichter bestehen. Die erweiterte Software des Umrichters verleiht dem Modul eine dezentrale Intelligenz und die Vernetzung über Busschaltungen eine hohe Flexibilität. Die aktuellen Entwicklungen auf dem Gebiet der Umrichter- und Anwendersoftware lassen die bisher getrennten aufgabenorientierten Lösungen für Bewegungs- und Positionierantriebe wieder zu einer vielseitig einsetzbaren universellen Gerätelösung - dem Servoumrichter - zusammenwachsen.

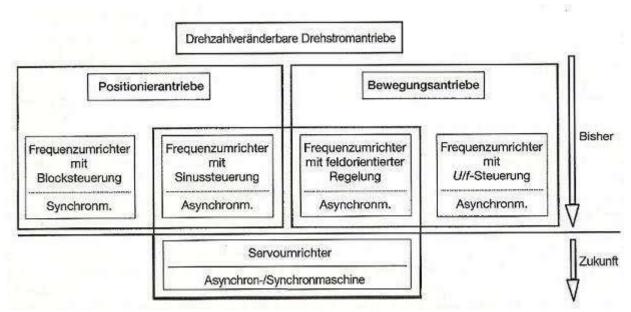


Bild 1.5: Entwicklung bei drehzahlveränderbaren Drehstromantrieben [3]

Diese neuen Gerätereihen überdecken mit zielorientiert einsetzbarer Software den gesamten Anwendungsbereich der Bewegungs- und Positionierantriebe mit einem Gerät. Die Digitaltechnik mit schnellen Signalprozessoren (DSP) ermöglicht in der AC-Antriebstechnik Regelverfahren, z.B. die der feldorientierten Regelung (FOR) oder direkten Selbstregelung (DSR, digitaler Drehmomentregelung), die eine bessere Dynamik als die bisher eingesetzten Gleichstromantriebe erreichen. Bei Bewegungsantrieben wird dabei sogar oft auf besondere Drehzahlgeber verzichtet (sensorless speed control, SSC). Dies funktioniert heute sogar auch bei Drehzahl 0 stabil. [3]

Vorkonfigurierte Softwareblöcke mit Zusatzfunktionalitäten und Klein-SPS-Systeme im Umrichter übernehmen Technologiefunktionen und anwenderspezifische Steuerungsaufgaben, die bislang selbstständige SPS-Einheiten ausgeführt haben. Dadurch entlasten diese intelligenten Einheiten die übergeordneten Steuerungen. Durch die Gleichlauf-Technologiefunktionen werden die bisherigen mechanischen Wellenverbindungen durch rein elektronische Verbindungen abgelöst; Beispiele sind die Königswelle, das elektronische Getriebe oder koordinierte Bahnsteuerungen mehrerer Wellen.

Die Digitaltechnik in den Geräten ermöglicht die Datenvernetzung der Antriebe. Einzelantriebe erhalten über ihre serielle Schnittstelle Prozess- oder Parameterdaten *just in time* von einem übergeordneten Leitsystem oder einem anderen Modul, das umgekehrt die aktuellen Ist-Daten des Antriebs abfragen und auswerten kann. Die Digitaltechnik in den Stromrichtern gestattet über aufsteckbare Busmodule einen solchen bidirektionalen Datenverkehr über verschiedene Feldbussysteme ohne großen Zusatzaufwand. Der weitere Datenfluss geht dann über Ethernet und global über das Internet. [4]

Am öffentlichen Netz arbeiten die verschiedensten Verbraucher. Darunter auch solche, die sehr empfindlich auf Spannungsabsenkungen reagieren. Zu solchen Spannungseinbrüchen kommt es beim Direkteinschalten oder $Y\Delta$ -Anlauf von größeren Asynchronmaschinen. Um Störungen zu reduzieren werden Anlaufdrosseln usw. oder Drehstromsteller vor die Asynchronmaschinen geschaltet, um sanft an- oder auszulaufen (Sanftanlaufgeräte, Softstarter). Sanft bedeutet dabei, dass sowohl das speisende Netz und die mechanischen Übertragungsglieder als auch die Arbeitsmaschine geschont werden. Bei Pumpenantrieben verhindert ein geführter sanfter Auslauf über Steller die gefürchteten Wasserschläge im Rohrsystem. [5]

1.2 Wirkungsweise und Aufbau von Drehstrom-Asynchronmaschinen

Anhand eines kausalen Erklärungsmodells soll die prinzipielle Wirkungsweise einer Asynchronmaschine erläutert werden.

- Zunächst wird ein Drehspannungssystem an die Ständerwicklungen gelegt.
- Der daraus resultierende Stromfluss durch die Ständerwicklung erzeugt ein Drehfeld B_d im Luftspalt. Das Drehfeld rotiert synchron mit der Netzfrequenz.
- Das Drehfeld induziert im (stehenden) Läufer eine Spannung U₂ bzw. Ströme I₂ (bei Belastung der Läuferklemmen).
- Wegen F = B * 1 * L wirken Tangentialkräfte auf die Läuferwicklungen bzw. Läuferstäbe. Es wirkt ein Drehmoment auf den Läufer.
- Der Läufer dreht sich mit einer Drehzahl n. Wird diese Drehzahl so groß wie die Drehfelddrehzahl ($n=n_1$), reduziert sich die Spannungsinduktion im Läufer auf $U_2=0$. Damit sinkt auch das erzeugte Drehmoment auf Null ab.

Die Drehstromasynchronmaschine besteht aus einem stillstehenden Teil, dem Stator und dem rotierenden Rotor bzw. Läufer. Sie sind durch einen kleinen Luftspalt (Bruchteil eines Millimeters) voneinander getrennt.

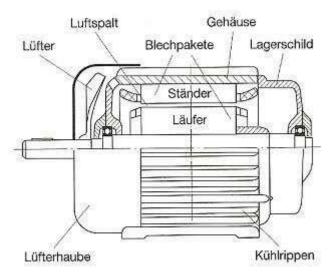


Bild 1.6: Aufbau der Asynchronmaschine [6]

Der Ständer besteht aus gegeneinander isolierten Dynamoblechen, die ein geschichtetes Eisenpaket bilden. Das Eisenpaket enthält Nuten zur Aufnahme der (hier: feststehenden) Erregerwicklung (oft dreisträngig). Die Ständerwicklungen werden mit sog. Nutverschlüssen vor mechanischen Schäden geschützt. Das Gehäuse besteht aus Gusseisen mit Kühlrippen. Der Läufer sorgt für eine Oberflächenkühlung.

Alle elektrischen Ständergrößen werden mit dem Index 1gekennzeichnet (z.B. Ständerstrom I₁).

Der Läufer (Rotor, Anker) besteht ebenfalls aus einem geschichteten Blechpaket mit Nuten (zur Aufnahme der Läuferwicklung). Der Luftspalt zwischen Läufer und Ständer ist möglichst gering (mm Bereich) zu halten. Nachteil: Leicht anfällig für Verschmutzung und Korrosion.

Alle elektrischen Läufergrößen mit dem Index 2 gekennzeichnet (z.B. Läuferstrom I₂).

1.2.1 Bauarten

Es gibt zwei Arten von Asynchronmaschinen, nämlich mit

- Kurzschlussläufer und mit
- Schleifringläufer.

Diese unterscheiden sich, wie die Namen schon verraten, in der Konstruktion ihrer Läufer voneinander. Der Aufbau des Ständers dagegen ist bei beiden identisch.

1.2.1.1 Kurzschlussläufer

Kurzschlussläufer werden die Rotoren von Asynchronmotoren genannt, die statt einer aus Draht gewickelten Spule (Wicklung) mit Schleifringen (Schleifringläufermotor) im Blechpaket dauernd

kurzgeschlossene, massive Windungen (Käfigläufer) besitzen, die ähnlich wie ein Hamsterlaufrad aus metallenen Querstäben mit beidseitigen metallenen Kurzschlussringen aufgebaut sind.

Bei großen Leistungen wird die Käfigwicklung im magnetischen Eisenblechpaket des Rotors aus Kupfer- und Bronzestäben aufgebaut, die in beiderseits außenliegende Kurzschlussringe aus dem

gleichen Material eingelötet werden. Für Motoren mit kleinerer Leistung wird die "Käfigwicklung" in entsprechende Aussparungen des Eisenblechpakets (Nuten oder Löcher) im Aluminium-Druckgussverfahren eingegossen. Eine besondere Bauart des Käfigläufers ist der Stromverdrängungsläufer.

Die Nuten für den Käfigläufer verlaufen in der Regel etwas schräg (leicht verdreht gestapeltes Blechpaket), um das Nutenpfeifen (inhomogenes Drehmoment, Netzverunreinigung) zu vermindern.

Durch das magnetische Drehfeld der Stator-Spulen werden in dem Metallkäfig Wirbelströme induziert, die in den untereinander kurzgeschlossenen Metallstäben fließen und ein eigenes Magnetfeld erzeugen. Die Verkopplung des Stator-Drehfeldes mit dem Käfigläufer-Feld führt zur Drehbewegung des Rotors.

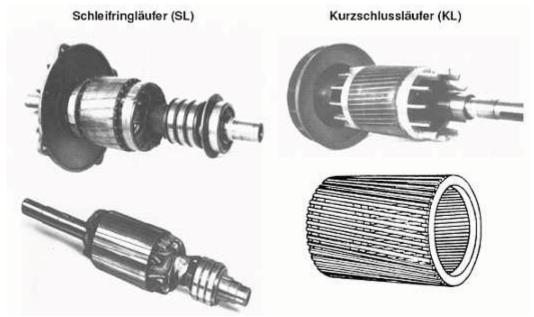


Bild 1.7: Läufertypen: Kurzschluss- und Schleifringläufer [6]

1.2.1.2 Schleifringläufer

Der Stator des Schleifringläufermotors ist genauso aufgebaut wie der Stator des Kurzschlussläufermotors. Auf der Läuferwelle befinden sich das Blechpaket und die Schleifringe. Je nach Baugröße des Motors wird entweder eine Rippenwelle oder eine zylindrische Welle verwendet. Auf die Welle wird das Blechpaket, in welchem sich rillenförmige Nuten befinden, aufgeschrumpft.

Die Läuferwicklung wird in die Nuten des Läuferblechpaketes eingefügt. Die zu den Schleifringen führenden Spulenenden sind wie auch bei Kollektormotoren mit einer Bandage gegen Zentrifugalkräfte gesichert.

Die Läuferwicklung hat einen kleineren Leiterquerschnitt als beim Käfigläufer und dementsprechend viele Windungen. Aus diesem Grund sind die induzierte Spannung und der Wirkwiderstand wesentlich größer als dies beim Käfigläufer der Fall ist. Der Strom ist geringer, wodurch die Übertragung über Schleifringe und Kohlebürsten ermöglicht wird.

Die Läuferwicklung ist in der Regel eine Dreiphasenwicklung. Die Wicklungen sind meistens in Stern, seltener in Dreieck geschaltet. Der Sternpunkt der Wicklungen wird im Innern des Läufers verschaltet. Bei einigen Motoren wird der Sternpunkt über einen vierten Schleifring nach außen

geführt. Dieser Sternpunktanschluss wird mit Q bezeichnet. Die Wicklungsenden sind an Schleifringen angeschlossen, an welchen als Stromabnehmer Kohlebürsten anliegen. Die dreisträngige Läuferwicklung hat die Anschlussbezeichnungen K, L, M.

Auf die Funktionsweise der Maschine hat es keinen Einfluss, ob die Rotorwicklung dreiphasig oder zweiphasig ausgeführt ist. Allerdings müssen der Rotor und der Stator die gleiche Polzahl haben; haben Rotor und Stator unterschiedliche Polzahlen, wird kein Drehmoment erzeugt.

Über die Schleifringe kann der Schleifringläufermotor mittels Leistungswiderständen angelassen werden. Die Anlassschaltung ist vom speisenden Netzpotential getrennt. [6]

1.2.2 Bauformen

Die Möglichkeiten für mechanische Gestaltung einer elektrischen Maschine und ihre Lage im Raum können auf verschiedene Arten kombiniert werden. Man nennt diese Kombinationen Bauformen.

Die Bauformen elektrischer Maschinen sind in IEC 60034-7 festgelegt. Zur einfacheren Verständigung sind Kurzzeichen genormt worden.

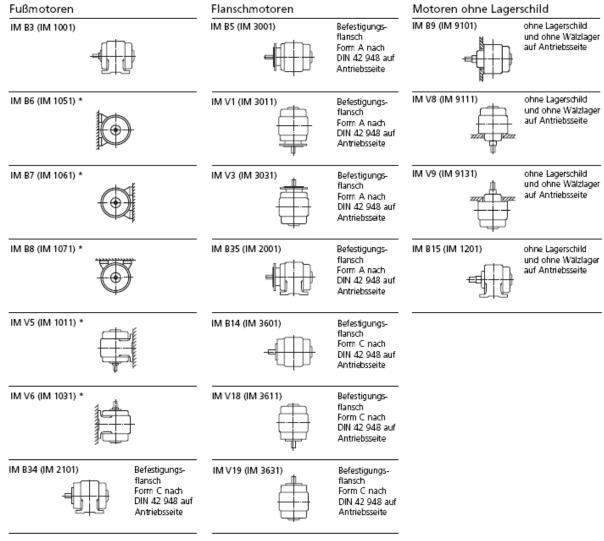


Bild 1.8: Bauformen nach IEC 60034-7 [7]