Jean Lévine

Analysis and Control of Nonlinear
 Systems

A Flatness-based Approach

Analysis and Control of Nonlinear Systems

Mathematical Engineering

Series Editors:

Prof. Dr. Claus Hillermeier, Munich, Germany (volume editor)
Prof. Dr.-Ing. Johannes Huber, Erlangen, Germany
Prof. Dr. Albert Gilg, Munich, Germany
Prof. Dr. Stefan Schäffler, Munich, Germany

Jean Lévine

Analysis and Control of Nonlinear Systems

A Flatness-based Approach

Prof. Dr. Jean Lévine
Directeur de Recherche
CAS, Unité Mathématiques et Systèmes
MINES-Paris Tech
35, rue Saint-Honoré
77300 Fontainebleau, FRANCE
jean.levine@mines-paristech.fr

ISBN 978-3-642-00838-2
e-ISBN 978-3-642-00839-9
DOI 10.1007/978-3-642-00839-9
Springer Dordrecht Heidelberg London New York
Library of Congress Control Number: 2009926861
(c) Springer-Verlag Berlin Heidelberg 2009

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Cover design: WMXDesign GmbH, Heidelberg
Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)

To Martine, Sonia and Benjamin

Preface

The present book is a translation and an expansion of lecture notes corresponding to a course of Mathematics of Control delivered during four years at the École Nationale des Ponts et Chaussées (Marne-la-Vallée, France) to Master students. A reduced version of this course has also been given at the Master level at the University of Paris-Sud since eight years. It may therefore serve as lecture notes for teaching at the Master or PhD level but also as a comprehensive introduction to researchers interested in flatness and more generally in the mathematical theory of finite dimensional systems and control.

This book may be seen as an outcome of the applied research policy pioneered by the Ecole des Mines de Paris (now MINES-ParisTech), France, aiming not only at academic excellence, but also at collaborating with industries on specific innovative projects to enhance technological innovation using the most advanced know-how. This influence, though indirectly visible, mainly concerns the originality of some of the topics addressed here which are, in a sense, a theoretic synthesis of the author's applied contributions and viewpoints in the control field, continuously elaborated and modified in contact with the industrial realities. Such a synthesis wouldn't have been made possible without the scientific trust and financial support of many companies during periods ranging from two to ten years. Particular thanks are due to Elf, Shell, Ifremer, Sextant Avionique, Valeo, PSA, IFP and MicroControle/Newport, and to all the outstanding engineers of these companies, from which the author could learn so much. The author particularly wishes to express his gratitude to Frédéric Autran and Bernard Rémond (Valeo), Alain Danielo and Roger Desailly (Micro-Controle), and Emmanuel Sedda (PSA).

The largest part of this book, dealing with flatness and applications, is inspired by works in collaboration, successively, with Benoît Charlet and Riccardo Marino, and then with Michel Fliess, Philippe Martin and Pierre Rouchon. The author addresses his warmest thanks to all of them for many fruitful discussions, in particular those in which the notion of differential
flatness could be brought to light. Some of the material used in the Singular Perturbation Chapter has been elaborated with Pierre Rouchon and Yann Creff, starting with a collaboration with Elf on distillation control. Their contributions are warmly acknowledged.

The author is also indebted to all his former PhD students, and particularly Michel Cohen de Lara, Guchuan Zhu, Régis Baron, Jean-Christophe Ponsart, Philippe Müllhaupt, Balint Kiss, Rida Sabri, Thierry Miquel, Thomas Devos and Jérémy Malaizé, in addition to the previously cited ones, Benoît Charlet, Philippe Martin, Pierre Rouchon and Yann Creff, for their skillful help to develop various applications of flatness in particularly interesting directions.

The author also wishes to warmly thank all his colleagues of the Centre Automatique et Systèmes, and more particularly Guy Cohen, Pierre Carpentier and Laurent Praly for their constant scientific trust and friendly encouragements during more than twenty years.

He would also like to especially acknowledge a recent fruitful collaboration with Felix Antritter of the Bundeswehr University, München, on symbolic computation of flatness conditions.

The first part of this manuscript was translated into english when the author visited the Department of Mathematics and Statistics of the University of Kuopio, Finland, from April to June 2006, as an Invited Professor funded by a Marie Curie Host Fellowship for the Transfer of Knowledge (project PARAMCOSYS, MTKD-CT-2004-509223), and was used as lecture notes for a course delivered during this period. The author is not only indebted to Markku Nihtilä, Chairman of this department, for his kind invitation, but also for his stimulating discussions and encouragements without which this book would not yet be finished. Many thanks are also addressed to Petri Kokkonen for his most efficient and enthusiastic help in the exercise sessions and in his careful reading of a draft version of this manuscript.

This manuscript has also been used as lecture notes for a two months intensive course given in March and April 2007 at the School of Electrical Engineering and Computer Science of the University of Newcastle, Australia, at the invitation of Jose De Dona and his group, where the decision to append a second part, dealing with industrial applications, has been taken. The author particularly wishes to express his profound thanks to Jose De Dona, Maria Seron, Jaqui Ramage and Graham Goodwin.

The author is also deeply indebted to Prof. Claus Hillermeier of the Bundeswehr University, München, for his kind invitation to publish this manuscript in the Springer collection he is supervising.

Contents

1 Introduction 1
1.1 Trajectory Planning and Tracking 2
1.2 Equivalence and Flatness 3
1.3 Equivalence in System Theory 5
1.4 Equivalence and Stability 5
1.5 What is a Nonlinear Control System? 6
1.5.1 Nonlinearity versus Linearity 6
1.5.2 Uncontrolled versus Controlled Nonlinearity 7
Part I THEORY
2 Introduction to Differential Geometry 13
2.1 Manifold, Diffeomorphism 14
2.2 Vector Fields 17
2.2.1 Tangent space, Vector Field 17
2.2.2 Flow, Phase Portrait 19
2.2.3 Lie Derivative. 21
2.2.4 Image of a Vector Field 22
2.2.5 First Integral, Straightening Out of a Vector Field 23
2.2.6 Lie Bracket 25
2.2.7 Distribution of Vector Fields 28
2.2.8 Integral Manifolds 29
2.2.9 First Order Partial Differential Equations 30
2.3 Differential Forms 32
2.3.1 Cotangent Space, Differential Form, Duality 32
2.3.2 Exterior differentiation 35
2.3.3 Image of a Differential Form 36
2.3.4 Pfaffian System, Complete Integrability 37
2.3.5 Lie Derivative of a 1-Form 39
2.3.6 Back to Frobenius Theorem 41
3 Introduction to Dynamical Systems 43
3.1 Recalls on Flows and Orbits 45
3.1.1 Equilibrium Point, Variational Equation. 45
3.1.2 Periodic Orbit 47
3.1.3 Poincarés Map 50
3.2 Stability of Equilibrium Points and Orbits 53
3.2.1 Attractor. 53
3.2.2 Lyapunov Stability 55
3.2.3 Remarks on the Stability of Time-Varying Systems 58
3.2.4 Lyapunov's and Chetaev's Functions 59
3.2.5 Hartman-Grobman's and Shoshitaishvili's Theorems,Centre Manifold.64
3.3 Singularly Perturbed Systems 73
3.3.1 Invariant Slow Manifold 75
3.3 .2 Persistence of the Invariant Slow Manifold 76
3.3.3 Robustness of the Stability 78
3.3.4 An Application to Modelling 79
3.4 Application to Hierarchical Control 81
3.4.1 Controlled Slow Dynamics 81
3.4.2 Hierarchical Feedback Design 82
3.4.3 Practical Applications 83
4 Controlled Systems, Controllability 87
4.1 Linear System Controllability 87
4.1.1 Kalman's Criterion 87
4.1.2 Controllability Canonical Form 90
4.1.3 Motion Planning 93
4.1.4 Trajectory Tracking, Pole Placement 95
4.2 Nonlinear System Controllability 96
4.2.1 First Order and Local Controllability 96
4.2.2 Local Controllability and Lie Brackets 97
4.2.3 Reachability 101
4.2.4 Lie Brackets and Kalman's Criterion for Linear Systems 04
5 Jets of Infinite Order, Lie-Bäcklund's Equivalence 107
5.1 An Introductory Example of Crane 107
5.2 Description of the System Trajectories 109
5.3 Jets of Infinite Order, Change of coordinates, Equivalence 113
5.3.1 Jets of Infinite Order, Global Coordinates 114
5.3.2 Product Manifolds, Product Topology 114
5.3.3 Cartan Vector Fields, Flows, Control Systems 115
5.3.4 Lie-Bäcklund Equivalence 121
5.3.5 Properties of the L-B Equivalence 125
5.3.6 Endogenous Dynamic Feedback 127
6 Differentially Flat Systems 131
6.1 Flat System, Flat Output 131
6.2 Examples 133
6.2.1 Mass-Spring System 133
6.2.2 Robot Control 134
6.2.3 Pendulum 135
6.2.4 Non Holonomic Vehicle 138
6.2.5 Vehicle with Trailers 139
6.3 Flatness and Controllability 141
6.4 Flatness and Linearization 143
6.4.1 Mass-Spring System (followed) 144
6.4.2 Robot Control (followed) 145
6.4.3 Pendulum (followed) 145
6.4.4 Non Holonomic Vehicle (followed) 146
6.5 Flat Output Characterization 146
6.5.1 The Ruled Manifold Necessary Condition. 148
6.5.2 Variational Characterization 151
6.5.3 The Polynomial Matrix Approach 152
6.5.4 Practical Computation of the Smith Decomposition 155
6.5.5 Flatness Necessary and Sufficient Conditions 157
6.5.6 The Operator \mathfrak{d} 160
6.5.7 Strong Closedness Necessary and Sufficient Conditions 163
6.5.8 Flat Outputs of Linear Controllable Systems 167
6.5.9 Examples 170
7 Flatness and Motion Planning 181
7.1 Motion Planning Without Constraint 182
7.1.1 The General Case 182
7.1.2 Rest-to-Rest Trajectories 184
7.2 Motion Planning With Constraints 185
7.2.1 Geometric Constraints 186
7.2.2 Quantitative Constraints 189
7.3 Application to Predictive Control. 190
8 Flatness and Tracking 193
8.1 The Tracking Problem 193
8.1.1 Pendulum (conclusion) 194
8.1.2 Non Holonomic Vehicle (conclusion) 195
8.2 Control of the Clock 197
Part II APPLICATIONS
9 DC Motor Starting Phase 203
9.1 Tracking of a Step Speed Reference 204
9.2 Flatness Based Tracking 206
10 Displacements of a Linear Motor With Oscillating Masses 211
10.1 Single Mass Case 212
10.1.1 Displacement Without Taking Account of the Auxiliary Mass 213
10.1.2 Displacements Taking Account of the Auxiliary Mass 214
10.1.3 Comparisons 216
10.2 Displacements With Two Auxiliary Masses 220
11 Synchronization of a Pair of Independent Windshield 225
11.1 Introduction 225
11.2 The Model of a Single Wiper 228
11.3 Open Loop Synchronization of the Pair of Wipers by Motion 229
11.4 Trajectory Tracking 233
11.5 Synchronization by Clock Control 235
12 Control of Magnetic Bearings. 243
12.1 Analysis and Control of a Ball 245
12.1.1 Modelling 245
12.1.2 Current Control 246
12.1.3 Voltage Control 253
12.1.4 Hierarchical Control 255
12.2 The General Shaft 265
12.2.1 Modelling 266
12.2.2 Current Controll 267
12.2.3 Hierarchical Controll 269
12.3 Implementation 269
12.3.1 Observer Design. 270
12.3.2 Digital Control 273
12.4 Experimental Results 273
12.4.1 Platform Description 273
12.4.2 Experiments 274
13 Crane Control 279
13.1 Orientation 279
13.2 Straight Line Displacement 282
13.2.1 Approximate Tracking of Straight Line by Hierarchical PID Control 282
13.2.2 Straight Line Tracking Without Small Angle Approximation 286
13.3 Obstacle Avoidance 290
13.3.1 Tracking With Small Angle Approximation 291
13.3.2 Tracking Without Small Angle Approximation 293
14 Automatic Flight Control Systems 295
14.0.3 Generic Aircraft Model. 296
14.0.4 Flatness Based Autopilot Design 299
References 307
Index 317

Chapter 1 Introduction

This book is made of two parts, Theory and Applications.
In the first Part, two major problems of automatic control are addressed: trajectory generation, or motion planning, and tracking of these trajectories.

In order to make this book as self-contained as possible we have included a survey of Differential Geometry and Dynamical System Theory. The viewpoint adopted for these topics has been tailored to prepare the reader to the language and tools of flatness-based control design, that is why we have preferred to place them ahead in Chapters 2 and 3 rather than to release them in an Appendix.

Recalls of linear system theory are also provided in Chapter 4. such as controllability and the corresponding Brunovský canonical form, since they constitute a first solution to the trajectory generation and tracking problems, which are generalized in the next chapters to flat systems, using a different approach, leading to simpler calculations.

The last chapters (from Chapter 5 to Chapter 8), are then devoted to the analysis of Lie-Bäcklund equivalence and flat systems. Note that a large part of Chapter 6 is devoted to the characterization of flat systems. This part, not essential to understand the examples and applications of flatness all along, may be skipped at first reading. However, the reader interested in this essential but difficult theoretical aspect, still full of unsolved questions, may find there a self-contained presentation.

In the second Part, the applications have been selected according to their pedagogical potentials, to illustrate as many control design techniques as possible in various industrial contexts: control of various types of motors, magnetic bearings, cranes and aircraft automatic flight design.

1.1 Trajectory Planning and Tracking

The problems of trajectory generation, or motion planning, and tracking of these trajectories are studied in the context of finite dimensional nonlinear systems, namely systems described by a set of nonlinear differential equations, influenced by a finite number of inputs, or control variables.

In practice, a system represents our knowledge of the evolution of some variables with respect to time, and the control variables are often designed as the inputs of the actuators driving the system. They may be freely chosen in order to achieve some tasks, or may be subject to constraints resulting from technological restrictions.

Numerous examples of such systems may be found in mechanical systems driven by motors (satellites, aircraft, cars, cranes, machine tools, etc.), electric circuits or electronic devices driven by input currents or voltages (converters, electromagnets, motors, etc.), thermal machines driven by heat exchangers or resistors, chemical reactors, chemical, biotechnological or food processes driven by input concentrations of some chemical components, or mixtures of these examples.

The notion of trajectory generation, or motion planning, corresponds to what we intuitively mean by preparing a flight plan or a motion plan in advance. More precisely, it consists in the off-line generation of a path, and the associated control actions that generate the path. This path is supposed to relate a prescribed initial point to a prescribed final point, in open-loop, i.e. based on the knowledge of the system model only, in the ideal case where disturbances are absent, and without taking account of possible measurements of the system state. Such a trajectory is often called reference or nominal trajectory, and the associated control the reference or nominal control. This notion is quite natural in the context of controlled mechanical systems such as aircraft, cars, ships, underwater vehicles, cranes, mechatronic systems, machine tools or positioning systems. It is also of interest in many other fields such as chemical, biotechnological or food processes, where we may want to change the concentration of a chemical component from its present value to another one in a fast but smooth way, for energy savings or productivity increase, or some other reason.

The tracking aspect concerns the design of a control law able to follow the reference trajectory even if some unknown disturbances force the system to deviate from it. For this purpose, this control law must take into account additional information, namely on-line measurements, or observations, from which the deviations at every time with respect to the reference trajectory can be deduced. In practice, such observations are provided by sensors. The class of controls that take into account the system state observations, is generally called feedback or closed-loop control. Without deviation (i.e. without disturbances), the control coincides with its reference, but as soon as a deviation is detected, the closed-loop control law must ensure the convergence of the system to its reference trajectory. The type of convergence (local, global,
exponential, polynomial, etc.) that can be guaranteed, its rate, sometimes called time constant of the closed-loop system, and other robustness properties versus disturbances, modelling errors, etc., will also be addressed in this book.

These two problems are particularly easy to solve for the class of nonlinear systems called differentially flat, or shortly flat, systems, introduced by M. Fliess, P. Martin, P. Rouchon and the author (Fliess et al. 1992a b|) and actively developed since then (see e.g. the surveys and books by Martin et al. 1997, Lévine 1999, Rudolph 2003, Rudolph et al. 2003, Sira-Ramirez and Agrawal 2004, Rudolph 2003, Rudolph et al. 2003, Müllhaupt 2009).

Most of the examples and applications of differential flatness of this book could have been presented using only elementary and intuitive mathematics. Though insufficiently precise for a mathematician, the mathematical ambiguities may be balanced by their physical evidence. However, if the reader wants to acquire a deeper understanding and/or wishes to solve more advanced problems, a precise mathematical background and a rigorous description of flat systems and their properties are required. Unfortunately, the corresponding mathematics are not easy. Their proper background comes from the theory of manifolds of jets of infinite order Krasil'shchik et al. 1986, Zharinov 1992. Since at present no self-contained presentation of this theory for control systems is available, we have decided to privilege this aspect in this book, while keeping the mathematical level as accessible as possible. Nevertheless, applications also receive a prominent place in this book (Part II) to present flat systems from every angle.

1.2 Equivalence and Flatness

To give an intuitive idea of differential flatness, a flat system is a system whose integral curves (curves that satisfy the system equations) can be mapped in a one-to-one way to ordinary curves (which need not satisfy any differential equation) in a suitable space, whose dimension is possibly different than the one of the original system state space.

This definition can be made rigorous by introducing several notions and tools: we need to work with mappings that are one-to-one between vector spaces or manifolds of different dimension, and infinitely differentiable. According to the well-known constant rank theorem (see section 2.3), such mappings don't exist between finite dimensional manifolds. Therefore, it may only become possible if the original manifolds can be embedded in infinite dimensional ones. A classical way to realize this embedding consists in using the natural coordinates together with an infinite sequence of their time derivatives, called jets of infinite order (see e.g. Krasil'shchik et al. 1986, Zharinov 1992).

In this framework, if two manifolds of jets of infinite order are mapped in a one-to-one and differentiable way, we say that they are Lie-Bäcklund equivalent. More precisely, two systems are said Lie-Bäcklund equivalent if and only if there exists a smooth one-to-one time-preserving mapping between their integral curves (trajectories that are solutions of the system differential equations) which maps tangent vectors to tangent vectors, in order to preserve time differentiation. Going back to our above stated intuitive definition of flatness, a flat system is Lie-Bäcklund equivalent to a system whose integral curves have no differential constraints (ordinary curves), that we call trivial system. Thus, finally, a system is flat if and only if it is Lie-Bäcklund equivalent to a trivial system.

Therefore, it becomes clear that the study of flat systems passes through the study of Lie-Bäcklund equivalence, a notion that plays a central role in this book. In addition, the notion of flatness may be interpreted as a change of coordinates that transforms the system in its "simplest" form, where calculations become elementary since the coordinates and the vector field describing the system are "straightened up". Recall that a transformation straightens out coordinates, curves, surfaces, vector fields, distributions (families of vector fields), etc. . if they are changed into lines, planes, constant vector fields, orthonormal frames, etc. . In particular, the integration of differential equations or partial differential equations in these coordinates may be done explicitly, as far as the associated straightening out transformations may be obtained.

These considerations indeed strongly suggest that the language of Differential Geometry is particularly well adapted to our context. However, the usual finite dimensional standpoint is too narrow for our purpose and its extension to manifolds of jets of infinite order seems difficult to circumvent. For the sake of completeness, we first introduce the reader to classic finite dimensional tools (Part I, Chapter 22), and then to their extension to jets of infinite order (Part I, Chapter 5).

Other approaches are indeed possible: finite dimensional differential geometric approaches Charlet et al. 1991, Franch 1999, Shadwick 1990, Sluis 1993, differential algebra and related approaches Fliess et al. 1995, Aranda-Bricaire et al. 1995, Jakubczyk 1993, infinite dimensional differential geometry of jets and prolongations Fliess et al. 1999, van Nieuwstadt et al. 1998, Pomet 1993, Pereira da Silva and Filho 2001, Rathinam and Murray 1998.

In the framework of linear finite or infinite dimensional systems, the notions of flatness and parametrization coincide as remarked by Pommaret [2001, Pommaret and Quadrat 1999, and in the behavioral approach of Polderman and Willems 1997, flat outputs correspond to latent variables of observable image representations Trentelman 2004 (see also Fliess 1992 for a module theoretic interpretation of the behavioral approach).

1.3 Equivalence in System Theory

Several equivalence relations have been studied to characterize system equivalence by various transformation groups. Traditionally, geometric objects are said to be intrinsically defined when their definition is not affected by change of coordinates (diffeomorphism) Boothby 1975, Chern et al. 2000, ChoquetBruhat 1968, Demazure 2000, Dieudonné 1960, Kobayashi and Nomizu 1996, Olver 1995, Pham 1992. In other words, two geometric objects are said equivalent if there exists a diffeomorphism mapping the first one into the second and vice versa. In the same spirit, system equivalence by static feedback has been introduced to deal with the equivalence of systems under static feedback action in an intrinsic way, namely independently of the choice of coordinates where the system and/or the control inputs are expressed. They yield classifications (i.e. partition of the set of systems into cosets) and canonical forms ("simplest" system representatives of the cosets) of major interest, such as the ones provided by Brunovský for linear controllable systems Brunovský 1970 (see also Rosenbrock 1970, Wolovich 1974, Tannenbaum 1980, Kailath 1980, Antoulas 1981, Polderman and Willems [1997, Sontag 1998 and, for extensions in the nonlinear case Sommer 1980, Jakubczyk and Respondek 1980, Hunt et al. 1983b, Marino 1986, Charlet et al. |1989, 1991, Gardner and Shadwick 1992, Isidori 1995, Nijmeijer and van der Schaft 1990, Marino and Tomei 1995). However, equivalence relations which only involve static state feedback appear to be too fine to study flat systems. They are finer than the Lie-Bäcklund one which corresponds to the equivalence under a special class of dynamic feedback called endogenous dynamic feedback Martin 1992, Fliess et al. 1995, Martin 1994, van Nieuwstadt et al. 1994, Aranda-Bricaire et al. 1995, Pomet 1993, van Nieuwstadt et al. 1998, Fliess et al. 1999, Lévine 2006, that strictly contains the class of static feedback.

1.4 Equivalence and Stability

In the stability analysis of closed-loop systems, the notion of equivalence, though different than the previously discussed ones and called here topological equivalence, is also most important: in the introduction to dynamical system theory (Chapter 3), we emphasize on the equivalence between the behavior (stability or instability) of a nonlinear system around an equilibrium point and the one of its tangent linear approximation.

If the latter tangent linear approximation is hyperbolic (if it has no eigenvalue on the imaginary axis of the complex plane), the nonlinear system can be proved to be topologically equivalent to its tangent linear approximation. More precisely (Hartman-Grobman's Theorem), hyperbolic systems can be shown to be equivalent to a linear system made up with two decoupled
linear subsystems, the first one being stable and the second one being unstable. These subsystems respectively live in locally defined invariant manifolds called stable and unstable, their respective dimensions corresponding to the number of eigenvalues, counted with their multiplicities, of the tangent linear approximation at the equilibrium point with negative and positive real parts.

In the non hyperbolic case, a nonlinear system may be shown to be topologically equivalent to a system made up with a linear stable subsystem and a linear unstable subsystem, obtained as before from the linear tangent approximation, and completed by a nonlinear neutral one, coupled to the previous linear ones. These subsystems respectively live in locally defined stable, unstable and centre manifolds (Shoshitaishvili's Theorem).

Singularly perturbed systems are introduced in this framework in Section 3.3, which extends the previous approach to control systems. We particularly insist on the links between singularly perturbed systems, multiple time scales and hierarchical control.

1.5 What is a Nonlinear Control System?

1.5.1 Nonlinearity versus Linearity

Before talking about nonlinearity, let us discuss the definition of linearity. First, linearity is a coordinate dependent property since a linear system might look nonlinear after a nonlinear change of coordinates. Take the following elementary example: $\dot{x}=u$ in a sufficiently small neighborhood of the initial condition $x_{0}=0$, and transform x into $\xi=\sqrt{x+1}$ and u into $v=u$. We have $\dot{\xi}=\frac{\dot{x}}{2 \sqrt{x+1}}=\frac{u}{2 \xi}$. Therefore, the transformed system, namely $\dot{\xi}=\frac{v}{2 \xi}$ is no more linear.

Note that in the previous transformation, ξ doesn't depend on u and is invertible in the sense that $x=\xi^{2}-1$, and v is also invertible as a function of ψ^{1}. Clearly, the set of transformations that enjoy these properties forms a group with respect to composition, and the linearity property of the system thus depends on this group ${ }^{2}$. More precisely, a system is said linear if it can be transformed into a linear system by a transformation of this group. The number of linear systems thus depends on the "size" of the group. This is why transformations depending on the input and its successive time derivatives, generating a larger group than the above mentioned one, will be introduced later.

[^0]Linear systems form a distinguished class in the set of nonlinear systems since they enjoy simpler properties as far as controllability, open-loop stability/instability, stabilizability, etc. are concerned. Therefore, they should be detected independently of the particular choice of coordinates in which they are expressed.

1.5.2 Uncontrolled versus Controlled Nonlinearity

In order to outline some fundamental differences between linear and nonlinear systems we may start with stability aspects for uncontrolled systems, by considering a linear system perturbed by a small nonlinearity, that significantly modifies the behavior of the original linear system. We next show that, once the system is controlled, what counts is the control efficiency to attenuate or remove the phenomenon created by the open-loop nonlinearity, as presented in the next example.

An introductory Example

This example is presented in three steps. We first start with a linear non controlled system, a spring with linear stiffness (force exerted by the spring proportional to its length variation), with a nonlinear perturbation, that may physically result from a defect of the spring, and modelled as a small nonlinear perturbation of the stiffness coefficient. It turns out that this small defect creates a big change in the system behavior, that doesn't exist in linear systems. At a second step, we connect the system with a passive device, that may be interpreted as a special case of feedback control, and show how the system behavior is locally modified. Finally, the third step consists in replacing the passive device by an active one to globally transform the original nonlinear system behavior into a linear one that may be tuned as we want.

Fig. 1.1 Spring and mass

Uncontrolled nonlinear perturbation

Consider a system made of a mass and an undamped spring of pulsation ω whose position, denoted by x, satisfies :

$$
\begin{equation*}
\ddot{x}+\omega^{2} x=0 \tag{1.1}
\end{equation*}
$$

with the spring stiffness k related to the pulsation ω by $\omega=\sqrt{\frac{k}{m}}, m$ being the mass of the rigid body attached to the spring.

Setting $\dot{x}=v$, the expression $v^{2}+\omega^{2} x^{2}$, proportional to the mechanical energy of the spring, remains constant along any trajectory of (1.1) since $\frac{d}{d t}\left(v^{2}+\omega^{2} x^{2}\right)=2 \dot{x}\left(\ddot{x}+\omega^{2} x\right)=0$. In other words, in the (x, v)-plane (phase plane), these trajectories are the ellipses of equation $v^{2}+\omega^{2} x^{2}=C$, where C is an arbitrary positive constant, and thus are closed curves around the origin, whose focuses are determined by the initial conditions $\left(x_{0}, v_{0}\right)$. We indeed recover the classical interpretation that once the spring is released from its initial position x_{0} with initial velocity v_{0}, it oscillates forever at the pulsation ω. This motion is neither attenuated nor amplified.

However, if the spring stiffness is not exactly a constant, even very close to it, but if this aspect has been neglected, a very different behavior may be expected.

Assume in fact that the spring stiffness is a linear slowly decreasing function of the length : $\frac{k(x)}{m}=\omega^{2}-\varepsilon x$, with $\varepsilon>0$ small, which means that the pulling force produced by the spring is $k(x) x=\omega^{2} x-\varepsilon x^{2}$. The spring's dynamical equation becomes

$$
\begin{equation*}
\ddot{x}+\omega^{2} x-\varepsilon x^{2}=0 \tag{1.2}
\end{equation*}
$$

a nonlinear equation because of the x^{2} term. Setting as before $v=\dot{x}$, we easily check that the expression (the mechanical energy up to a constant)

$$
\begin{equation*}
E_{\varepsilon}(x, v)=v^{2}+x^{2}\left(\omega^{2}-\frac{2}{3} \varepsilon x\right) \tag{1.3}
\end{equation*}
$$

is such that $\frac{d}{d t} E_{\varepsilon}(x, v)=0$ along the integral curves of 1.2, and thus remains constant with respect to time. The perturbed spring trajectories are therefore described by the curves of equation $E_{\varepsilon}(x, v)=E_{\varepsilon}\left(x_{0}, v_{0}\right)$ shown on Figure 1.2. We see that for a small initial length and velocity, the spring's behavior is not significantly changed with respect to the previous linear one. On the contrary, for larger initial length and velocity, the spring becomes too sluggish and thus unstable.

The differences with respect to the original linear system are thus twofold:

1. the only equilibrium point of the linear system 1.1) is the origin $(0,0)$ whereas system 1.2 has two equilibria $(0,0)$ and $\left(\frac{\omega^{2}}{\varepsilon}, 0\right)$;

Fig. 1.2 Destabilization of the spring caused by its nonlinear stiffness
2. the linear system behavior is purely oscillatory, whereas the perturbed nonlinear one is oscillatory near the origin but unstable for larger initial conditions.

Adding a damper

This phenomenon is well-known on truck's trailers or on train wagon bogies where it is necessary to add a damper to dissipate the energy excess stored in the spring when released. In fact, the appending of a damper may be interpreted as a feedback: in (1.2), a frictional force $K v$, proportional to the velocity, is added, which amounts to consider that the system is controlled by the force $u=K v$:

$$
\begin{equation*}
\ddot{x}+\omega^{2} x-\varepsilon x^{2}+u=\ddot{x}+\omega^{2} x-\varepsilon x^{2}+K v=0 . \tag{1.4}
\end{equation*}
$$

Doing the previous calculation again, $\frac{d E_{\varepsilon}}{d t}$ along an arbitrary trajectory of 1.4., we find that $\frac{d E_{\varepsilon}}{d t}=-2 K v^{2}<0$, which proves that the function E_{ε} is monotonically decreasing along the trajectories of 1.4 . It is readily seen that, for $|x|<\frac{\omega^{2}}{\varepsilon}$, the function E_{ε} is strictly convex and admits the origin $x=0, v=0$ as unique minimum. Consequently, the decreasing rate of E_{ε} along the trajectories such that $|x|<\frac{\omega^{2}}{\varepsilon}$ implies that the trajectories all converge to the origin, and thus that the system is stabilized thanks to the damper

Active control

The stability can be improved yet if the damper is replaced by an active hydraulic jack for instance. Indeed, if the force u produced by the damper can be modified at will, it suffices to set

$$
u=-\omega^{2} x+\varepsilon x^{2}+K_{1} x+K_{2} v
$$

with $K_{1}>0$ and $K_{2}>0$, and the equation (1.4) becomes the exponentially stable linear differential equation

$$
\ddot{x}=-K_{1} x-K_{2} \dot{x} .
$$

The thread followed in this simple example is quite representative of one of the main orientations of this course: we first analyze the nonlinearities that might influence the non controlled system, and then various feedback loop designs to compensate some or all of the unwanted dynamical responses are studied.

Part I THEORY

Chapter 2
 Introduction to Differential Geometry

This Chapter aims at introducing the reader to the basic concepts of differential geometry such as diffeomorphism, tangent and cotangent space, vector field, differential form. Special emphasis is put on the integrability of a family of vector fields, or distribution according to its role in nonlinear system theory,

For simplicity's sake, we have defined a manifold as the solution set to a system of implicit equations expressed in a given coordinate system, according to the implicit function theorem. One can then get rid of the coordinate choice thanks to the notion of diffeomorphism or curvilinear coordinates. Particular interest is given to the notion of straightening out coordinates, that allow to express manifolds, vector fields or distributions in a trivial way.

The interested reader may find a more axiomatic presentation e.g. in Anosov and Arnold 1980, Arnold 1974, 1980, Boothby 1975, Chevalley 1946, Choquet-Bruhat 1968, Demazure 2000, Godbillon 1969, Pham 1992. The implicit function theorem, the constant rank theorem and the existence and uniqueness of integral curves of a differential equation, which are part of the foundations of analysis, are given without proof. Excellent proofs may be found in Arnold 1974, Cartan 1967, Dieudonné 1960, Marino 1986, Pham 1992, Pontriaguine 1975.

Some applications of these methods to Mechanics may be found in Abraham and Marsden 1978, Godbillon 1969 and, in Isidori 1995, Khalil 1996, Nijmeijer and van der Schaft 1990, Sastry 1999, Slotine and Li 1991, Vidyasagar 1993, other approaches and developments of the theory of control of nonlinear systems.

[^1]
2.1 Manifold, Diffeomorphism

Recall that, given a coordinate system $\left(x_{1}, \ldots, x_{n}\right)$ and a k-times continuously differentiable mapping Φ from an open set $U \subset \mathbb{R}^{n}$ to \mathbb{R}^{n-p} with $0 \leq p<n$, the tangent linear mapping $D \Phi(x)$, also called Jacobian matrix of Φ, is the matrix whose entry of row i and column j is $\frac{\partial \Phi_{i}}{\partial x_{j}}(x)$.

We start with the following fundamental theorem:
Theorem 2.1. (Implicit Function Theorem) Let Φ be a k-times continuously differentiable mapping, with $k \geq 1$, from an open set $U \subset \mathbb{R}^{n}$ to \mathbb{R}^{n-p} with $0 \leq p<n$. We assume that there exists at least an $x_{0} \in U$ such that $\Phi\left(x_{0}\right)=0$. If for every x in U the tangent linear mapping $D \Phi(x)$ has full rank (equal to $n-p$), there exists a neighborhood $V=V_{1} \times V_{2} \subset U$ of x_{0} in $\mathbb{R}^{n}=\mathbb{R}^{p} \times \mathbb{R}^{n-p}$, with $V_{1} \in \mathbb{R}^{p}$ and $V_{2} \in \mathbb{R}^{n-p}$, and a k-times continuously differentiable mapping ψ from V_{1} to V_{2} such that the two sets $\left\{x \in V_{1} \times V_{2} \mid \Phi(x)=0\right\}$ and $\left\{\left(x_{1}, x_{2}\right) \in V_{1} \times V_{2} \mid x_{2}=\psi\left(x_{1}\right)\right\}$ are equal.

In other words, the function ψ locally satisfies $\Phi\left(x_{1}, \psi\left(x_{1}\right)\right)=0$ and the "dependent variable" $x_{2}=\psi\left(x_{1}\right)$ is described by the p (locally) independent variables x_{1}.

Example 2.1. Consider the function Φ from \mathbb{R}^{2} to \mathbb{R} defined by $\Phi\left(x_{1}, x_{2}\right)=$ $x_{1}^{2}+x_{2}^{2}-R^{2}$ where R is a positive real. Clearly, a solution to the equation $\Phi=0$ is given by $x_{1}= \pm \sqrt{R^{2}-x_{2}^{2}}$ for $\left|x_{2}\right| \leq R$. The implicit function Theorem confirms the existence of a local solution around a point ($x_{1,0}, x_{2,0}$) such that $x_{1,0}^{2}+x_{2,0}^{2}=R^{2}$ (e.g. $x_{1,0}=R, x_{2,0}=0$), since the tangent linear mapping of Φ at such point is: $D \Phi\left(x_{1,0}, x_{2,0}\right)=\left(2 x_{1,0}, 2 x_{2,0}\right) \neq(0,0)$, and has rank 1.

Note that there are two local solutions according to whether we consider the point $\left(x_{1,0}, x_{2,0}\right)$ equal to $\left(\sqrt{R^{2}-x_{2,0}^{2}}, x_{2,0}\right)$ or to $\left(-\sqrt{R^{2}-x_{2,0}^{2}}, x_{2,0}\right)$.

The notion of manifold is a direct consequence of Theorem 2.1
Definition 2.1. Given a differentiable mapping Φ from \mathbb{R}^{n} to $\mathbb{R}^{n-p}(0 \leq p<$ n), we assume that there exists at least an x_{0} satisfying $\Phi\left(x_{0}\right)=0$ and that the tangent linear mapping $D \Phi(x)$ has full rank $(n-p)$ in a neighborhood V of x_{0}. The set X defined by the implicit equation $\Phi(x)=0$, is called differentiable manifold of dimension p. Otherwise stated:

$$
\begin{equation*}
X=\{x \in V \mid \Phi(x)=0\} \tag{2.1}
\end{equation*}
$$

The fact that this set is non empty is a direct consequence of Theorem 2.1. If in addition Φ is k-times differentiable (resp. analytic), we say that X is a C^{k} differentiable manifold, $k=1, \ldots, \infty$ (resp. analytic -or $C^{\omega}{ }_{-}$).

If non ambiguous, we simply say manifold.

Fig. 2.1 The sphere of \mathbb{R}^{3}

Example 2.2. The affine (analytic) manifold: $\left\{x \in \mathbb{R}^{n} \mid A x-b=0\right\}$ has dimension p if $\operatorname{rank}(A)=n-p$ and $b \in \operatorname{Im} A$.

Example 2.3. The sphere of \mathbb{R}^{3} centered at C, of coordinates $\left(x_{C}, y_{C}, z_{C}\right)$, and of radius R, given by $\left\{(x, y, z) \in \mathbb{R}^{3} \mid\left(x-x_{C}\right)^{2}+\left(y-y_{C}\right)^{2}+\left(z-z_{C}\right)^{2}-R^{2}=0\right\}$, is a 2 -dimensional analytic manifold (see Fig. 2.1).

The concept of local diffeomorphism is essential to describe manifolds in an intrinsic way, namely independently of the choice of coordinates in which the implicit equation $\Phi(x)=0$ is stated).

Definition 2.2. Given a mapping φ from an open subset $U \subset \mathbb{R}^{p}$ to an open subset $V \subset \mathbb{R}^{p}$, of class $C^{k}, k \geq 1$ (resp. analytic), we say that φ is a local diffeomorphism of class C^{k} (resp. analytic) in the neighborhood $U\left(x_{0}\right)$ of a point x_{0} of U if φ is invertible from $U\left(x_{0}\right)$ to a neighborhood $V\left(\varphi\left(x_{0}\right)\right)$ of $\varphi\left(x_{0}\right)$ of V and if its inverse φ^{-1} is also C^{k} (resp. analytic).

Indeed, if we consider the manifold X defined by (2.1), and if we introduce the change of coordinates $x=\left(x_{1}, x_{2}\right)=\varphi(z)=\left(\varphi_{1}\left(z_{1}\right), \varphi_{2}\left(z_{2}\right)\right)$ where $\varphi=\left(\varphi_{1}, \varphi_{2}\right)$ is a local diffeomorphism of \mathbb{R}^{n}, with φ_{1} (resp. φ_{2}) local diffeomorphism of \mathbb{R}^{p} (resp. \mathbb{R}^{n-p}), the expression $x_{2}=\psi\left(x_{1}\right)$ becomes $\varphi_{2}\left(z_{2}\right)=\psi\left(\varphi_{1}\left(z_{1}\right)\right)$, or $z_{2}=\left(\varphi_{2}^{-1} \circ \psi \circ \varphi_{1}\right)\left(z_{1}\right)$, which means that the same manifold can be equivalently represented by $x_{2}=\psi\left(x_{1}\right)$, in the x-coordinates, or by $z_{2}=\tilde{\psi}\left(z_{1}\right)$, with $\tilde{\psi}=\varphi_{2}^{-1} \circ \psi \circ \varphi_{1}$, in the z-coordinates. It results that the notion of manifold doesn't depend on the choice of coordinates, if the coordinate changes are diffeomorphisms.

We also introduce the slightly weaker notion of local homeomorphism. We say that φ is a local C^{k} (resp. analytic) homeomorphism if φ is of class C^{k} (resp. analytic), locally invertible and if its inverse is continuous.

Local diffeomorphisms are characterized by the following classical result:
Theorem 2.2. (of local inversion) A necessary and sufficient condition for φ to be a local C^{k} diffeomorphism $(k \geq 1)$ in a neighborhood of x_{0} is that its tangent linear mapping $D \varphi\left(x_{0}\right)$ is one-to-one.

We also recall:
Theorem 2.3. (constant rank) Let φ be a C^{k} mapping ($k \geq 1$) from a m-dimensional C^{k} manifold X to a r-dimensional C^{k} manifold Y.
(i) for every $y \in \varphi(U) \subset Y, \varphi^{-1}(\{y\})$ is a $m-q$-dimensional C^{k} submanifold of X;
(ii) $\varphi(U)$ is a q-dimensional C^{k} submanifold of Y.

In particular,
(i), if $m \leq r, \varphi$ is injective from U to Y if and only if $\operatorname{rank}(D \varphi(x))=m$ for every $x \in U$ (thus φ is a homeomorphism from U to $\varphi(U)$).
(ii)' if $m \geq r, \varphi$ is onto from U to V, an open subset of Y, if and only if $\operatorname{rank}(D \varphi(x))=r$.

The notion of curvilinear coordinates provide a remarkable geometric interpretation of a diffeomorphism. In particular, one can find (locally) an adapted system of curvilinear coordinates in which the manifold X given by (2.1) is expressed as a vector subspace of \mathbb{R}^{p}. It suffices, indeed, to introduce the curvilinear coordinates:

$$
y_{1}=\Phi_{1}(x), \ldots, y_{n-p}=\Phi_{n-p}(x), y_{n-p+1}=\Psi_{1}(x), \ldots, y_{n}=\Psi_{p}(x)
$$

the independent functions $\Psi_{1}, \ldots, \Psi_{p}$ being chosen such that the mapping

$$
x \mapsto\left(\Phi_{1}(x), \ldots, \Phi_{n-p}(x), \Psi_{1}(x), \ldots, \Psi_{p}(x)\right)
$$

is a local diffeomorphism. In that case, we say that we have (locally) "straightened out" the coordinates of X since

$$
X=\left\{y \mid y_{1}=\cdots=y_{n-p}=0\right\}
$$

Example 2.4. We go back to the sphere of example 2.3 and introduce the polar coordinates (ρ, θ, φ) corresponding to the transformation Γ from $\mathbb{R}_{+} \times$ $\mathbb{R} / 2 \pi \mathbb{Z} \times \mathbb{R} / 2 \pi \mathbb{Z}$ to \mathbb{R}^{3}, given by

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\Gamma(\rho, \theta, \varphi)=\left(\begin{array}{c}
x_{C}+\rho \cos \varphi \cos \theta \\
y_{C}+\rho \cos \varphi \sin \theta \\
z_{C}+\rho \sin \varphi
\end{array}\right) .
$$

Clearly Γ is invertible in any of the two open sets defined by the intersection of $\mathbb{R}_{+} \times \mathbb{R} / 2 \pi \mathbb{Z} \times \mathbb{R} / 2 \pi \mathbb{Z}$ with $\{\cos \varphi>0\}$ or $\{\cos \varphi<0\}$, and where the closed subset $\{\rho \cos \varphi=0\}$, whose image by Γ is the pair of points of cartesian coordinates $x=x_{C}, y=y_{C}, z=z_{C} \pm \rho$, is excluded. Γ is of class C^{∞}, and its local inverse is given (e.g. for $\cos \varphi>0$) by

$$
\left(\begin{array}{c}
\rho \\
\theta \\
\varphi
\end{array}\right)=\Gamma^{-1}(x, y, z)=\left(\begin{array}{c}
\sqrt{\left(x-x_{C}\right)^{2}+\left(y-y_{C}\right)^{2}+\left(z-z_{C}\right)^{2}} \\
\arctan \left(\frac{y-y_{C}}{x-x_{C}}\right) \\
\arctan \left(\frac{z-z_{C}}{\sqrt{\left(x-x_{C}\right)^{2}+\left(y-y_{C}\right)^{2}}}\right)
\end{array}\right)
$$

Θ is also of class C^{∞} in the open set
$\Gamma\left(\mathbb{R}_{+} \times \mathbb{R} / 2 \pi \mathbb{Z} \times \mathbb{R} / 2 \pi \mathbb{Z} \cap\{\cos \varphi>0\}\right)=\mathbb{R}^{2} \times\left\{z>z_{C}\right\}-\left\{\left(x_{C}, y_{C}, z_{C}+\rho\right)\right\}$
and thus Γ is a local diffeomorphism.
In polar coordinates, the implicit equation defining the sphere becomes $\rho-R=0$. Therefore, the sphere of \mathbb{R}^{3} is locally equal to the set $\{\rho=R\}$.

One can check that the tangent linear mapping of Γ is given by

$$
D \Gamma=\left(\begin{array}{ccc}
\cos \varphi \cos \theta & -\rho \cos \varphi \sin \theta & -\rho \sin \varphi \cos \theta \\
\cos \varphi \sin \theta & \rho \cos \varphi \cos \theta & -\rho \sin \varphi \sin \theta \\
\sin \varphi & 0 & \rho \cos \varphi
\end{array}\right)
$$

and that $\operatorname{det}(D \Gamma)=\rho^{2} \cos \varphi$, which precisely vanishes on the closed subset $\{\rho \cos \varphi=0\}$ where Γ is not injective, in accordance with Theorem 2.2.

2.2 Vector Fields

2.2.1 Tangent space, Vector Field

Assume, as before, that we are given a differentiable mapping Φ from \mathbb{R}^{n} to $\mathbb{R}^{n-p}(0 \leq p<n)$, with at least an x_{0} satisfying $\Phi\left(x_{0}\right)=0$. The tangent linear mapping $D \Phi(x)$ of Φ at x, expressed in the local coordinate system $\left(x_{1}, \ldots, x_{n}\right)$, is thus the matrix $\left(\frac{\partial \Phi_{j}}{\partial x_{i}}(x)\right)_{1 \leq i \leq n, 1 \leq j \leq n-p}$.
It is also assumed that $D \Phi(x)$ has full rank $(n-p)$ in a neighborhood V of x_{0}, so that the implicit equation $\Phi(x)=0$ defines a p-dimensional manifold denoted by X.

We easily check that a normal vector at the point x to the manifold X is "carried" by $D \Phi(x)$, or more precisely, is a linear combination of the rows

Fig. 2.2 Tangent and normal spaces to a manifold at a point.
of $D \Phi(x)$. Indeed, let $y(t)$ be a differentiable curve contained in X for all $t \in[0, \tau[$, with $\tau>0$ sufficiently small, such that $y(0)=x$ (the existence of such a curve results from the implicit function Theorem). We therefore have $\Phi(y(t))=0$ for all $t \in\left[0, \tau\left[\right.\right.$ and thus $\frac{\Phi(y(t))-\Phi(x)}{t}=0$. Letting t converge to 0, we get $D \Phi(x) \cdot \dot{y}(0)=0$, where $\left.\dot{y}(0) \stackrel{\text { def }}{=} \frac{d y}{d t} \right\rvert\, t=0$ (see Fig 2.2. , which proves that the vector $\dot{y}(0)$, tangent to X at the point x, belongs to the kernel of $D \Phi(x)$. Doing the same for every curve contained in X and passing through x, it immediately results that every element of the range of $D \Phi(x)$ is orthogonal to every tangent vector to X at the point $x, Q . E . D$.

This motivates the following:
Definition 2.3. The tangent space to X at the point $x \in X$ is the vector space

$$
\mathrm{T}_{x} X=\operatorname{ker} D \Phi(x)
$$

The tangent bundle $\mathrm{T} X$ is the set $\mathrm{T} X=\bigcup_{x \in X} \mathrm{~T}_{x} X$.
Taking into account the fact that $D \Phi(x)$ has rank $n-p$ in V,

$$
\operatorname{dim} \mathrm{T}_{x} X=\operatorname{dim} \operatorname{ker} D \Phi(x)=p, \forall x \in V
$$

Example 2.5. Going back to example 2.3, the tangent space to the sphere of \mathbb{R}^{3} at the point $(x, y, z) \neq\left(x_{C}, y_{C}, z_{C} \pm R\right)$ is
$\operatorname{ker}\left(\left(x-x_{C}\right)\left(y-y_{C}\right)\left(z-z_{C}\right)\right)=\operatorname{span}\left\{\left(\begin{array}{c}\left(y-y_{C}\right) \\ -\left(x-x_{C}\right) \\ 0\end{array}\right),\left(\begin{array}{c}\left(z-z_{C}\right) \\ 0 \\ -\left(x-x_{C}\right)\end{array}\right)\right\}$
and is clearly 2 -dimensional.
Definition 2.4. A vector field f (of class C^{k}, analytic) on X is a mapping (of class C^{k}, analytic) that maps every $x \in X$ to the vector $f(x) \in \mathrm{T}_{x} X$.

Definition 2.5. An integral curve of the vector field f is a local solution of the differential equation $\dot{x}=f(x)$.

The local existence and uniqueness of integral curves of f results from the fact that f is of class $C^{k}, k \geq 1$, and thus locally Lipschitzian ${ }^{2}$

2.2.2 Flow, Phase Portrait

We denote by $X_{t}(x)$ the point of the integral curve of the vector field f at time t, starting from the initial state x at time 0 . Recall that if f is of class C^{k} (resp. C^{∞}, analytic) there exists a unique maximal integral curve $t \mapsto X_{t}(x)$ of class C^{k+1} (resp. C^{∞}, analytic) for every initial condition x in a given neighborhood, in the sense that the interval of time I on which it is defined is maximal.

As a consequence of existence and uniqueness, the mapping $x \mapsto X_{t}(x)$, noted X_{t}, is a local diffeomorphism for every t for which it is defined: $X_{t}\left(X_{-t}(x)\right)=x$ for every x and t in a suitable neighborhood $U \times I$ of $X \times \mathbb{R}$, and thus $\left.X_{t}^{-1}\right|_{U}=\left.X_{-t}\right|_{U}$, where we have denoted by $\varphi_{\left.\right|_{U}}$ the restriction of a function φ to U.

When the integral curves of f are globally defined on \mathbb{R}, we say that the vector field f is complete. In this case, X_{t} exists for all $t \in \mathbb{R}$, and defines a one-parameter group of local diffeomorphisms, namely:

1. the mapping $t \mapsto X_{t}$ is C^{∞},
2. $\quad X_{t} \circ X_{s}=X_{t+s}$ for all $t, s \in \mathbb{R}$ and $X_{0}=I d_{X}$.

As already remarked, the items 1 and 2 imply that X_{t} is a local diffeomorphism for all t.

The mapping $t \mapsto X_{t}$ is called the flow associated to the vector field f. It is also often called the flow associated to the differential equation $\dot{x}=f(x)$.

It is straightforward to verify that the flow satisfies the differential equation

$$
\begin{equation*}
\frac{d}{d t} X_{t}(x)=f\left(X_{t}(x)\right) \tag{2.2}
\end{equation*}
$$

for all t and every initial condition x such that $X_{t}(x)$ is defined.
In the time-varying case, namely for a system

[^2]\[

$$
\begin{equation*}
\dot{x}=f(t, x) \tag{2.3}
\end{equation*}
$$

\]

the corresponding notion of flow is deduced from what precedes by adding a new differential equation describing the time evolution $\dot{t}=1$, and augmenting the state $\tilde{x}=(x, t)$, which amounts to work with the new vector field $\tilde{f}(\tilde{x})=$ $(f(t, x), 1)$, which is now a stationary one on the augmented manifold $X \times \mathbb{R}$ of dimension $p+1$.

We call orbit of the vector field f an equivalence class for the equivalence relation " $x_{1} \sim x_{2}$ if and only if there exists t such that $X_{t}\left(x_{1}\right)=x_{2}$ or $X_{t}\left(x_{2}\right)=x_{1}$ ".

In other words, $x_{1} \sim x_{2}$ if and only if x_{1} and x_{2} belong to the same maximal integral curve of f. We also call orbit of a point the maximal integral curve passing through this point and its oriented orbit the orbit of this point along with its sense of motion.

The phase portrait of the vector field f is defined as the partition of the manifold X into oriented orbits.

Fig. 2.3 The 3 orbits of system 2.4.

Example 2.6. The flow of the differential equation on \mathbb{R}

$$
\begin{equation*}
\dot{x}=-x \tag{2.4}
\end{equation*}
$$

is $X_{t}\left(x_{0}\right)=e^{-t} x_{0}$. Since e^{-t} is positive for all t, two arbitrary points of \mathbb{R} belong to the same integral curve if and only if they belong to the same halfline $\left(\mathbb{R}_{+}\right.$or $\left.\mathbb{R}_{-}\right)$or they are both 0 , i.e. $x_{1} \sim x_{2}$ is equivalent to $\operatorname{sign}\left(x_{1}\right)=$ $\operatorname{sign}\left(x_{2}\right)$ or $x_{1}=x_{2}=0$. The system (2.4) thus admits 3 orbits: $\mathbb{R}_{+}, \mathbb{R}_{-}$and $\{0\}$, as indicated on Fig. 2.3 .

The same conclusion holds for the system $\dot{x}=+x$, the only difference being the orientation of the orbits, opposite to the one of (2.4).

Indeed, the flow and phase portrait do not depend on the choice of coordinates of X : if φ is a local diffeomorphism and if we note

$$
z=\varphi(x)
$$

we have

$$
\begin{equation*}
\dot{z}=\frac{\partial \varphi}{\partial x} f\left(\varphi^{-1}(z)\right) . \tag{2.5}
\end{equation*}
$$

Thus, denoting by g the vector field on $\varphi(X) \subset X$ defined by

$$
g(z)=\frac{\partial \varphi}{\partial x} f\left(\varphi^{-1}(z)\right)
$$

and Z_{t} the local flow associated to g, one immediately sees that Z_{t} is deduced from the flow X_{t} by the formula $Z_{t}(\varphi(x))=\varphi\left(X_{t}(x)\right)$, or:

$$
\begin{equation*}
Z_{t} \circ \varphi=\varphi \circ X_{t} \tag{2.6}
\end{equation*}
$$

It results that if $x_{1} \sim x_{2}$, then $z_{1}=\varphi\left(x_{1}\right) \sim z_{2}=\varphi\left(x_{2}\right)$, which proves that the orbits of g are the orbits of f transformed by φ and the same for their respective phase portraits.

2.2.3 Lie Derivative

Consider a system of local coordinates $\left(x_{1}, \ldots, x_{p}\right)$ in an open set $U \subset \mathbb{R}^{p}$. The components of the vector field f in these coordinates are denoted by $\left(f_{1}, \ldots, f_{p}\right)^{T}$. We now show that to f one can associate in a one-to-one way a first order differential operator called Lie derivative along f.

Denote, as before, by $t \longmapsto X_{t}(x)$ the integral curve of f in U passing through x at $t=0$.
Definition 2.6. Let h be a function of class C^{1} from \mathbb{R}^{p} to \mathbb{R} and $x \in U$. We call Lie derivative of h along f at x, noted $L_{f} h(x)$, the time derivative, at $t=0$, of $h\left(X_{t}(x)\right)$, i.e.:

$$
L_{f} h(x)=\frac{d}{d t} h\left(X_{t}(x)\right)_{\mid t=0}=\sum_{i=1}^{p} f_{i}(x) \frac{\partial h}{\partial x_{i}}(x) .
$$

We also call Lie derivative of h along f, denoted by $L_{f} h$, the mapping $x \mapsto$ $L_{f} h(x)$ from U to \mathbb{R}.

According to this formula, every vector field f may be identified to the linear differential operator of the first order

$$
L_{f}=\sum_{i=1}^{p} f_{i}(x) \frac{\partial}{\partial x_{i}} .
$$

It results that, in local coordinates, we can use indifferently the componentwise or the differential operator expression of f, namely

$$
f=\left(f_{1}, \ldots, f_{p}\right)^{T} \sim \sum_{i=1}^{p} f_{i}(x) \frac{\partial}{\partial x_{i}}
$$

[^0]: ${ }^{1}$ this transformation is actually a local C^{∞} diffeomorphism: in addition to its local invertibility, it is of class C^{∞} in a neighborhood of $x_{0}=0$, with C^{∞} inverse.
 2 indeed, the smoothness of the transformations, which may be C^{k} for any $k \geq 2$ or analytic, is also part of the group definition.

[^1]: ${ }^{1}$ a geometric object not to be confused with the functional analytic notion of distribution developed by L. Schwartz.

[^2]: ${ }^{2}$ Recall that a function f from \mathbb{R}^{p} to \mathbb{R}^{p} is locally Lipschitzian if and only if for every open set U of \mathbb{R}^{p} and every x_{1}, x_{2} in U, there exists a real K such that $\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\| \leq$ $K\left\|x_{1}-x_{2}\right\|$.
 The differential equation $\dot{x}=f(x)$, with f locally Lipschitzian, admits, in a neighborhood of every point x_{0}, an integral curve passing through x_{0} at $t=0$, i.e. a mapping $t \mapsto x(t)$ satisfying $\dot{x}(t)=f(x(t))$ and $x(0)=x_{0}$ for all $t \in I, I$ being an open interval of \mathbb{R} containing 0 .

