


Springer Series in 38
Computational
Mathematics

Editorial Board
R. Bank
R.L. Graham
J. Stoer
R. Varga
H. Yserentant



Bertil Gustafsson

High Order
Difference Methods
for Time
Dependent PDE

With 94 Figures and 12 Tables

123



Bertil Gustafsson

Ledungsvägen 28
75440 Uppsala
Sweden
bertil@stanford.edu

ISBN 978-3-540-74992-9 e-ISBN 978-3-540-74993-6

DOI 10.1007/978-3-540-74993-6

Springer Series in Computational Mathematics ISSN 0179-3632

Library of Congress Control Number: 2007940500

Mathematics Subject Classification (2000): 65M06

© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data
banks. Duplication of this publication or parts thereof is permitted only under the provisions
of the German Copyright Law of September 9, 1965, in its current version, and permission
for use must always be obtained from Springer. Violations are liable to prosecution under the
German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Cover design: WMX Design GmbH, Heidelberg
Typesetting: by the author using a Springer LATEX macro package
Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com



Preface

Many books have been written on finite difference methods (FDM), but there are
good reasons to write still another one. The main reason is that even if higher order
methods have been known for a long time, the analysis of stability, accuracy and
effectiveness is missing to a large extent. For example, the definition of the formal
high order accuracy is based on the assumption that the true solution is smooth,
or expressed differently, that the grid is fine enough such that all variations in the
solution are well resolved. In many applications, this assumption is not fulfilled,
and then it is interesting to know if a high order method is still effective. Another
problem that needs thorough analysis is the construction of boundary conditions
such that both accuracy and stability is upheld. And finally, there has been quite a
strong development during the last years, in particular when it comes to very general
and stable difference operators for application on initial–boundary value problems.

The content of the book is not purely theoretical, neither is it a set of recipes for
various types of applications. The idea is to give an overview of the basic theory and
construction principles for difference methods without going into all details. For ex-
ample, certain theorems are presented, but the proofs are in most cases left out. The
explanation and application of the theory is illustrated by using simple model ex-
amples. Among engineers, one is often talking about “toy problems” with a certain
scepticism, under the assumption that the results have no significance for real world
problems. When looking at the scientific production over the years, there is a cer-
tain truth to this claim. A method may be working very well, and better than other
well known methods, for a certain model problem in one space dimension, but it is
not even clear how the method can be generalized to several space dimensions. In
this book we try to avoid falling into this trap. The generalization should of course
always be possible in the sense that an algorithm based on the same principle can
be constructed for the full problem, and hopefully the essential properties of the
numerical method have been caught by the analysis of the simpler problem. Some-
times, the theoretical considerations carry over without difficulty, but sometimes we
have to rely upon intuition and numerical experiments to be confident about the
performance on the large problem. On the other hand, there are many cases where
the model problem tells it all. For example, for a hyperbolic system of PDE in one
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space dimension, one can transform the system to a diagonal one and limit the anal-
ysis to a scalar PDE with constant coefficients. By applying the transformation back,
and generalizing to variable coefficients, the results hold for the original problem as
well.

When discussing stability and accuracy, the model examples in this book are of-
ten of low order accuracy, since they have a simpler structure. The goal is simply
to illustrate how the theory works, and it is easier to see the basic mechanisms for
simpler schemes. Once the application of the theory is well understood, it should be
clear how to apply it for more complicated and powerful high order methods. How-
ever, there are two main application areas where we choose to go into more detail
about the full implementation of the suggested methods. One application is wave
propagation with relevance for acoustics and electromagnetics. In this case the most
interesting problems are so large, that there is no realistic low order computational
alternative. The other one is incompressible flow governed by the Navier-Stokes
equations. Even if low order methods have been used for many applications, the
real challenge is turbulent flow, where there is no realistic alternative to high order
methods if the smallest scales are to be represented well. In both cases, we present
a fairly detailed description of the methods. One good reason for this is to illustrate
how the analysis and construction described in earlier chapters is carried out for a
more technically complicated problem.

There is a pervading theme in the book, and that is compactness of the compu-
tational stencils. A comparison between two approximations of the same order al-
ways comes out in favor of the more compact one, i.e., as few grid points as possible
should be involved, both in space and time. The smaller error constants often make
quite a dramatic change. Padé approximations and staggered grids are examples of
this, as well as the box scheme described in 8.

The outline of the book is as follows.
In Chapter 1 there is an analysis of the effectiveness of higher order methods. It

is based on Fourier analysis, and the necessary number of points per wave length is
estimated for different types of PDE and different orders of accuracy.

Chapter 2 contains a survey of the theory for well-posedness and stability, and the
different tools for analysis are described. These tools are based on Fourier analysis
for problems with periodic solutions and the energy method and Laplace transform
method for initial–boundary value problems. Different kinds of stability definitions
are necessary in this case, and we discuss the implications of each one.

In Chapter 3 we discuss how the order of accuracy is connected to the conver-
gence rate, i.e., how fast the numerical solution approaches the true solution when
the grid is refined. This is a straightforward analysis for periodic problems, but less
obvious when boundaries are involved.

Chapters 2 and 3 can be read independently of the rest of the book as an intro-
duction and a survey of the stability theory for difference approximations in general.

The next three chapters contain a systematic presentation of the different ways of
constructing high order approximations. There are the standard centered difference
operators, but also Padé type operators as well as schemes based on staggered grids.
When constructing the difference schemes, one principle is to approximate the dif-
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ferential equation in space first, and then approximate the resulting ODE system
in time. But there are other ways to obtain effective difference schemes where the
space and time discretizations are not separated, and this is described in Chapter 6.

In Chapter 7 we bring up the special problem of constructing proper approxima-
tions of the boundary conditions, and of the modifications of the scheme near the
boundaries. A major part of this chapter is devoted to the so called SBP operators,
which are based on summation by parts leading to stability in the sense of the energy
method.

Chapter 8 is a little different from the other ones, since the box scheme discussed
there is only second order accurate. However, because of the compact nature, it is
sometimes more accurate than higher order ones, and some recent results regarding
this property are presented. Another advantage is that it can easily be generalized to
nonuniform grids.

The next two chapters are devoted to applications. The purpose is not to give
a survey of problems and numerical methods, but rather to illustrate the applica-
tion of certain high order methods in some detail for a few problems of high inter-
est in the engineering and scientific communities. In this way, we hope to give an
idea of how to handle the technical details. In Chapter 9 we discuss wave propaga-
tion problems described by first order hyperbolic PDE with application in acoustics
and electromagnetics. Here we concentrate on a class of high order methods based
on staggered grids, and demonstrate the effectiveness, even if the solutions are not
smooth. We also present a new method of embedding the boundary with a certain
definition of the coefficients in the PDE such that the true boundary conditions are
well represented. In Chapter 10 we discuss incompressible fluid dynamics. The flow
is governed by the Navier–Stokes equations, but we give a special presentation of
the Stokes equations, since they play a special role in the Navier–Stokes solver. The
method is semi-implicit and fourth order accurate in space. Large linear systems of
equations must be solved for each time step, and we present the iterative solver in
some detail as well.

A big challenge, particularly in gas dynamics, is computation of solutions to
nonlinear problems containing discontinuities or shocks. This requires some special
theory and specialized methods. Techniques that work well for nonlinear problems
with smooth solutions, like the incompressible Navier–Stokes equations in Chapter
10, are not well suited. We discuss the theory and methods for these problems in
Chapter 11. This is an area where low order methods dominate even more than for
linear problems, but we give some emphasis on those methods that can be general-
ized to high order.

Each chapter has a summary section at the end. These sections contain a brief
summary of the theory and results of the chapter, and also some historical remarks
and comments on available literature.

When electronic computers came in use in the forties, the field of Numerical
Analysis expanded very quickly. Already from the beginning, the solution of ordi-
nary and partial differential equations was in focus, and the development of FDM
set full speed. Hardly no other methods were considered, and it was not until the
late sixties, that finite element methods (FEM) started emerging for solving PDE
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problems. In the beginning, FEM were used mostly for steady state problems, and
for approximation of the space part of time dependent problems. For approxima-
tion in time, finite difference methods were used, and this is still the case for many
applications. The great advantage with FEM is their flexibility when it comes to ap-
proximation of irregular domains. This flexibility is shared by finite volume methods
(FVM), but construction of high order FVM is not that easy.

The geometric flexibility of FEM is not shared by spectral and pseudo-spectral
methods, which was the next class of numerical methods that emerged for PDE.
Their strength is the very high accuracy relative to the required work. However,
these methods have at least as many restrictions as FDM on the type of computa-
tional domain, in particular those that are based on approximation by trigonometric
polynomials (Fourier methods). Later this difficulty was partly overcome by the use
of spectral element methods, where the domain is partitioned into many subdomains
with orthogonal polynomials used for approximation on each one of them.

During the last decade, discontinuous Galerkin methods have arisen as a new
interesting class of methods. They can be seen as a generalization of FEM, and have
the potential of leading to faster algorithms.

In the final chapter, we give a brief introduction to all of the methods mentioned
here.

The available commercial and public software is today dominated by algorithms
based on finite element methods (or finite volume methods for problems in fluid
problems). One reason for this is that the development of unstructured grid gen-
erators has made enormous progress during the last decades, and this is important
for many applications. On the other hand, for problems where structured grids pro-
vide an acceptable representation of the computational domain, it is hard to beat
a good high order difference method when it comes to implementation, speed and
effectiveness.

We have limited the presentation in this book almost exclusively to uniform grids.
The use of Cartesian grids is for convenience, we could of course use any other of
the classic coordinate systems like for example cylindrical coordinates. In general,
the Cartesian uniform grid can be seen as the model for all cases where a smooth
mapping takes the physical domain to a rectangle in 2-D or hyper-rectangle in higher
dimensions.

If a smooth mapping cannot be used for transformation of the whole domain, one
can use Cartesian coordinates together with some sort of interpolation procedure
near the boundary, and construct the finite differences locally on unstructured grids.
Another way is to construct one local structured grid that fits the irregular boundary,
and another grid that is used in the main part of the domain. These two (or more)
grids are then connected via interpolation. A third way is to couple a finite difference
method with a finite element or finite volume method near the boundary, and in
this way arriving at a hybrid method. Still another way is to embed the irregular
boundary in a larger domain with regular boundaries, and to enforce the boundary
conditions by some modification of the PDE.
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If the need for a nonstructured grid arises from the fact that the solution varies
on very different scales, the most general finite difference technique is based on
piecewise uniform grids, that are coupled by an interpolation procedure.

There is also the possibility to construct FDM directly on unstructured grids in
the whole computational domain. However, the stability is then a harder issue, and
furthermore, the effectiveness will not be much better than with FEM.
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Chapter 1
When are High Order Methods Effective?

In the modern era of computational mathematics beginning in the forties, most meth-
ods in practical use were first or second order accurate. Actually, that is the case even
today, and the reason for this low accuracy is probably the simpler implementation.
However, from an efficiency point of view, it is most likely that they should be
substituted by higher order methods. These require more programming work, and
the computer has to carry out more arithmetic operations per grid point. However,
for a given error tolerance, the number of grid points can be reduced substantially,
and in several dimensions, one may well reduce the computing time and memory
requirement by orders of magnitude.

In this chapter, we shall investigate how the order of accuracy affects the perfor-
mance of the method. We shall use simple model problems to get an idea of what
we can expect for different types of PDE.

1.1 Preliminaries

Every numerical method for solution of differential equations is based on some sort
of discretization, such that the computer can handle it in finite time. The most com-
mon discretization parameter is the step size h, which denotes the typical distance
between points in a grid where the solution can be computed. If the true solution can
formally be expressed as an infinite sum, the discretization parameter is N, which
denotes the finite number of terms in the approximating sum. For difference meth-
ods, the approximation is related to the differential equation by the truncation error
τ , and the order of accuracy is defined as p if τ � hp. Under certain conditions that
will be described in Chapter 3, this leads to error estimates of the same order, i.e.,
the error in the solution is also proportional to hp. Those methods that have p � 2
are usually called higher order methods.

The difference approximations throughout this book will be built by the basic
centered, forward and backward difference operators on a uniform grid with step
size h

1



2 1 When are High Order Methods Effective?

x j = jh � j = 0��1��2� � � � �

Grid functions in space are defined by u(x j)� u j, and the difference operators are

D0u j = (u j+1�u j�1)�(2h) �
D+u j = (u j+1�u j)�h �

D�u j = (u j �u j�1)�h �

We also define the shift operator by

Eu j = u j+1 �

All the difference operators commute, such that for example

D0D+D� = D+D�D0 = D0D�D+ �

For any difference operator Q we use the simplified notation Qu j, which is to be
interpreted as (Qu) j. This notation is used even when j is fixed, i.e., Qu0 means
(Qu) j=0.

The time discretization is done on a uniform grid

tn = nk� n = 0�1� � � � �

where k is the time step. The approximation of a function u(x j� tn) is denoted by un
j .

1.2 Wave Propagation Problems

In this section we shall consider wave propagation problems represented by the
simple model equation

ut = ux

satisfied by the simple wave eiω(x+t), where ω is the wave number . It may seem as
a complication to consider complex solutions in the analysis, also when we know
that the solutions are real, but actually it is a simplification. The reason is that the
algebraic operations become easier in this way when Fourier analysis is used.

The most straightforward way of finding the order of accuracy of a certain differ-
ence approximation is Taylor expansion . It is easily shown that for any sufficiently
smooth function u(x), we have

D0u(x) = ux + h2

6
uxxx +O(h4) �

i.e., D0 is a second order approximation of ∂�∂x. The leading part of the truncation
error can now be eliminated by including a difference approximation of it. Again, it
is easily shown by Taylor expansion that
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D0D+D�u(x) = uxxx +O(h2) �

which gives us the fourth order approximation

Q4u(x) = ux +O(h4) �

where

Q4 = D0(I� h2

6
D+D�) �

After a few more Taylor expansions, one obtains the sixth order approximation

Q6 = D0(I� h2

6
D+D�+ h4

30
D2

+D2
�) �

Since the solution of our model problem is periodic, we consider the computational
domain 0� x� 2π � 0� t, and the grid

x j = jh � j = 0�1� � � � �N � (N + 1)h = 2π �

With the notation Q2 = D0, we have the three alternative approximations

du j

dt
= Qpu j � p = 2�4�6 � (1.1)

With the ansatz
u j(t) = û(t)eiωx j �

we get the Fourier transform of the equation (1.1)

dû
dt

= Q̂pû �

where Q̂p is the Fourier transform of Qp. Since

D0eiωx = i
h

sinξ eiωx �

D+D�eiωx =� 4
h2 sin2 ξ

2
eiωx �

where ξ = ωh, we get

Q̂2 = i
h

sinξ �

Q̂4 = i
h

sinξ (1 + 2
3

sin2 ξ
2

) �

Q̂6 = i
h

sinξ (1 + 2
3

sin2 ξ
2

+ 8
15

sin4 ξ
2

) �

(1.2)
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The solution in Fourier space is û(t) = exp(Q̂pt), which gives the solution in physi-
cal space

u j(t) = eiωx j+Q̂pt �

The approximation changes iω in the exponent to Q̂p = Q̂p(ξ ), and it makes sense
to compare these quantities. After normalization by the factor h�i, we compare ξ
with hQ̂p(ξ )�i. Assuming for convenience that N is an even number, the highest
wave number that can be represented on the grid is ω = N�2 = (π�h�2)�h. Since
h is arbitrarily small, the range of ξ is 0� �ξ � � π . Figure 1.1 shows how hQ̂p(ξ )�i
approaches ξ for increasing p. The true wave speed for our problem is -1, and for
the approximation it is �Q̂p�(iω), which is always less than 1 in magnitude. The
waves will be slowed down by the approximation, more for higher frequencies, and
this error is called the dispersion error.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

Fig. 1.1 ξ (�) � Q̂p(ξ )h�i � p = 2(��) � 4(��) � 6(��)

Next we will estimate the number of grid points Np = N + 1 that are necessary
for achieving a certain accuracy, and for convenience, we assume that ω is positive.
The solution is periodic in both time and space, and the length of one period in time
is 2π�ω . If we want to compute q periods, the time interval is 0 � t � 2πq�ω . We
also introduce the number of grid points per wavelength

Mp = Np�ω = 2π�ξ � p = 2�4�6 �

We assume that ξ �� 1, and investigate the error defined as
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v(p)(t) = max
j
�eiω(x j+t)� eiωx j+Q̂pt �= �1� e(�iω+Q̂p)t � �

By Taylor expansion in terms of ξ , we obtain

v(2)(t)� ωtξ 2

6
� πqξ 2

3
= 4π3q

3M2
2

� (1.3)

By prescribing the maximum error ε for v(2), we obtain an expression for M2 in
terms of q and ε . By applying the same procedure for p = 4 and p = 6, we get the
complete list

M2 � 2π
�πq

3ε

�1�2
�

M4 � 2π
� πq

15ε

�1�4
�

M6 � 2π
� πq

70ε

�1�6
�

(1.4)

Since the work per grid point increases by a constant factor (independent of q and ε)
for each level of increased accuracy, we note that a higher order method always wins
if the accepted error level is low enough, and/or the time interval is large enough.
Furthermore, the gain is more pronounced in several space dimensions. If an explicit
time integrator is used, there is a limit on the time step for stability reasons. If the
number of grid points in each space direction can be reduced by a factor α � 1 by
using a higher order method, the total reduction of the number of grid points for a
problem with three space dimensions, is a factor α4.

Indeed, there is a substantial gain already in one space dimension, and quite
modest error levels. Table 1.1 shows Mp for a 1% error level and q = 20 and q = 200
respectively.

Table 1.1 Mp for 1% error level

q M2 M4 M6

20 287 28 13
200 909 51 20

For several space dimensions, the total number of grid points for a second order
method becomes totally unrealistic for long time integration. Clearly it pays to use
a fourth order method in these cases, even if the computing time per grid point is
longer. Going to sixth order is more doubtful in one or two space dimensions.

The formal order of accuracy, as well as the estimates above, are derived under
the assumption that the solution u(x� t) is smooth. In practice this is seldom the
case, and one might wonder how the higher order methods behave for less smooth
solutions. Consider for example the problem
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ut = ux � �1� x� 1 � 0� t �

u(x�0) = �sin(πx�2)�r � (1.5)

where r is an odd number. The solution �sin(π(x+ t)�2)�r is 2-periodic in both time
and space. The derivative of order r is discontinuous, i.e., the solution becomes
smoother for higher r. Figures 1.2,1.3,1.4 show the solutions for r = 1�3�5 and its
approximations u(p) obtained by a formally pth order accurate method. The figures
show the solution at t = 6 when the true solution is back at its initial state for the third
time. Even for r = 1, the higher order methods give better solutions. The dramatic
change between the 2nd and 4th order methods is clearly visible.
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Fig. 1.2 u(x�6)� r = 1 (�)� u(p) � p = 2(��)� p = 4(��)� p = 6(��) � N = 20
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Fig. 1.3 u(x�6)� r = 3 (�)� u(p) � p = 2(��)� p = 4(��)� p = 6(��) � N = 20
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−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6
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Fig. 1.4 u(x�6)� r = 5 (�)� u(p) � p = 2(��)� p = 4(��)� p = 6(��) � N = 20

The next three figures show the l2-error ∑ j �v j(t)�2h for r = 1�3�5 as a function
of time for N = 20 and N = 40. For the case r = 1, the convergence rate is roughly
linear (� h) for all three methods, but the error is significantly smaller for the higher
order ones. For the smoother cases r = 3 and r = 5, the convergence rate goes up
considerably as expected.
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(b) N=40

Fig. 1.5 l2-error, r = 1� p = 2(��)� p = 4(��)� p = 6(��)
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Fig. 1.6 l2-error, r = 3� p = 2(��)� p = 4(��)� p = 6(��)
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Fig. 1.7 l2-error, r = 5� p = 2(��)� p = 4(��)� p = 6(��)

1.3 Parabolic Equations

For parabolic equations, the situation is a little different. Consider the heat equation
in its simplest form and the model problem

ut = uxx �

u(x�0) = eiωx

with the solution u(x� t) = e�ω
2t+iωx. The standard second order approximation is

du j

dt
= D+D�u j �

u j(0) = eiωx j
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with the solution u j(t) = eP̂2(ξ )t+iωx j , where

P̂2(ξ ) =� 4
h2 sin2 ξ

2

is the Fourier transform of D+D� � Apparently, the accuracy is determined by the
ability of P̂2(ξ ) to approximate�ω2.

The fourth and sixth order approximations are

du j

dt
= D+D�(I� h2

12
D+D�)u j �

du j

dt
= D+D�(I� h2

12
D+D�+ h4

90
(D+D�)2)u j

with the solution u j(t) = eP̂p(ξ )t+iωx j � p = 4� 6, where

P̂4(ξ ) =� 4
h2 sin2 ξ

2
(1 + 1

3
sin2 ξ

2
) �

P̂6(ξ ) =� 4
h2 sin2 ξ

2
(1 + 1

3
sin2 ξ

2
+ 8

45
sin4 ξ

2
) �

Figure 1.8 shows a comparison between ξ 2 =ω2h2 and�P̂p(ξ )h2� p = 2� 4� 6 � All
three approximations give a stronger damping with time than the true solution has.

In order to estimate the necessary number of grid points, we consider the error
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Fig. 1.8 ξ 2(�) � �P̂p(ξ )h2 � p = 2(��) � 4(��) � 6(��)



10 1 When are High Order Methods Effective?

v(p)(t) = max
j
�eiωx j�ω2t � eiωx j+P̂p(ξ )t �= e�ω

2t �1� e(ω2+P̂p(ξ ))t � � p = 2� 4� 6 �

For small �ξ �, we have by Taylor expansion

P̂2(ξ )��ω2�1� ξ 2

12
+O(ξ 4)

�
�

giving the approximative error

v(2)(t)� 1
12

ω2ξ 2te�ω
2t � (1.6)

In contrast to the hyperbolic case, the error is maximal at a point in time which is
independent of the number of computed periods:

max
t

(v(2)(t))� ξ 2

12e
for t = 1

ω2 �

For the prescribed error level ε , the necessary number of points per wave length is

M2 � 2π
(12eε)1�2

�

A similar calculation for the fourth and sixth order cases gives the number of points
per wave length

M4 � 2π
(90eε)1�4

�

M6 � 2π
(560eε)1�6

�

Table 1.2 shows Mp for the error levels ε = 0�01� 0�001� 0�0001.

Table 1.2 Mp for different error levels, parabolic equations

ε M2 M4 M6

0.01 11 5 4
0.001 35 9 6
0.0001 110 16 9

Since Mp is independent of the length of the time integration (except for the first
short part), it takes stronger accuracy requirements to get a real advantage of higher
order accurate methods for second order parabolic problems. It can be shown that
this conclusion holds also for higher order parabolic equations, since they all have
strong damping with time, which causes the error to peak after a short time.
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1.4 Schrödinger Type Equations

The Schrödinger equation in its simplest form is

ut = iuxx �

with complex solutions u. With the usual Fourier component as initial function, the
solution is u(x� t) = ei(ωx�ω2t). The only difference from the parabolic case, is the
extra constant i multiplying the space derivative. However, this difference is quite
significant when it comes to choosing the best order of approximation, since we
don’t have any damping of the amplitudes any longer. The behavior is more like the
hyperbolic case, with increasing error all the time until it reaches a level O(1).

The approximations of the Schrödinger equation are obtained precisely as for
the parabolic model problem in the previous section, except for an extra factor i
multiplying them. Therefore, we don’t have to go through the whole analysis again,
but rather substitute e�ω2t by e�iω2t . The error derived in (1.6) is now obtained as

v(2)(t)� 1
12

ω2ξ 2t �

and similarly for the v(4) and v(6). Therefore, we have the same situation as for the
hyperbolic case. The only difference is that the length of a period in time is now
2π�ω2, but for q periods it leads to the same type of inequality as (1.3):

v(2) � ω2tξ 2

12
� πqξ 2

6
= 2π3q

3M2
2

�

With a prescribed error level ε , we get in analogy with (1.4)

M2 � 2π
�πq

6ε

�1�2
�

M4 � 2π
� πq

45ε

�1�4
�

M6 � 2π
� πq

270ε

�1�6
�

(1.7)

Compared to the parabolic case, there is now an extra factor q involved. The error
will grow with increasing time intervals for integration, but the influence becomes
weaker with increasing order of accuracy. For the 1% error level, we get Table 1.3.
The results are very similar to the hyperbolic case, and again the most dramatic
advantage is obtained by going from second to fourth order. Note however, that one
period in time is now 2π�ω2, which is shorter than in the hyperbolic case. So if the
total time interval for integration is [0� T ] for both cases, the comparison between
lower and higher order methods comes out even more favorable for the higher order
ones in the case of Schrödinger type equations.
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Table 1.3 Mp for 1% error level

q M2 M4 M6

20 203 22 11
200 642 38 16

1.5 Summary

The first theoretical analysis regarding optimal order of accuracy for first order hy-
perbolic equations was done by Kreiss and Oliger 1972 [Kreiss and Oliger, 1972].
This type of analysis has been presented in this chapter, also for higher order differ-
ential equations. The first rule of thumb is that the advantage of high order methods
is more pronounced for problems where small errors in the solution are required.
Secondly, for real equations ∂u�∂ t = a∂ qu�∂ tq, a real and q odd, there is an extra
advantage with high order methods for long time integrations. This extra advantage
is there also for complex equations with a = i and even q, giving the solutions a
wave propagation character. For problems in several space dimensions, the advan-
tage with high order methods is even more pronounced.

For parabolic problems with real a and even q, the advantage with higher order
methods is less. The reason for this is that there is an inherent damping in the equa-
tion, which means that the errors are not allowed to accumulate with time as for
hyperbolic problems. Even if the integration is carried out over a long time interval,
the error behaves more like short time integration.

The analysis presented here is based on the behavior of the approximation when
applied to a single wave with a fixed wave number ω . If, for a whole wave package,
the highest wave number ω0 that is of interest to us is determined a priori, then the
guidelines derived in this chapter tell us what method should be used to obtain a
certain accuracy for the whole solution. One could of course have more involved
criteria, where for example less accuracy is required for higher wave numbers, and
then the conclusions would be modified. One can also discuss in terms of group
velocity as Trefethen did in [Trefethen, 1983], see also [Strikwerda, 1989].

The time discretization can of course also be included in the analysis, as was done
in [Swartz and Wendroff, 1974] for hyperbolic problems. The results are in line with
the ones summarized above. A more detailed comparison between different schemes
for wave propagation problems was carried out by Zingg in [Zingg, 2000]. Further
investigations are carried out in Chapters 6 and 9.



Chapter 2
Well-posedness and Stability

Stability is a fundamental concept for any type of PDE approximation. A stable
approximation is such that small perturbations in the given data cause only small
perturbations in the solutions. Furthermore, the solutions converge to the true solu-
tion of the PDE as the step size h tends to zero. The extra condition required for
this property is that the PDE problem is well posed. In this chapter we shall present
a survey of the basic theory for the well-posedness and stability. The theory can
be divided into three different techniques: Fourier analysis for Cauchy and peri-
odic problems, the energy method and Laplace analysis (also called normal mode
analysis) for initial–boundary value problems. In order to emphasize the similarities
between the continuous and discrete case, we treat the application of each technique
to both the PDE and the finite difference approximations in the same section (the
Laplace technique for PDE is omitted).

2.1 Well Posed Problems

We consider a general initial–boundary value problem

∂u
∂ t

= Pu + F � 0� t �

Bu = g �

u = f � t = 0 �

(2.1)

Here P is a differential operator in space, and B is a boundary operator acting on
the solution at the spacial boundary. (Throughout this book, we will refer to t as the
time coordinate, and to the remaining independent variables as the space variables,
even if the physical meaning may be different.) There are three types of data that
are fed into the problem: F is a given forcing function , g is a boundary function
and f is an initial function. (By “function” we mean here the more general concept
“vector function”, i.e., we are considering systems of PDE.) A well posed problem

13
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has a unique solution u, and there is an estimate

��u��I � K(�� f ��II + ��F��III + ��g��IV ) � (2.2)

where K is a constant independent of the data. In general, there are four different
norms involved, but �� � ��I and �� � ��II are often identical.

Let v be the solution of the perturbed problem

∂v
∂ t

= Pv + F + δF � 0� t �

Bv = g + δg �

v = f + δ f � t = 0 �

(2.3)

Assuming that P and B are linear operators, we subtract (2.1) from (2.3), and obtain
for the perturbation w = v�u of the solution

∂w
∂ t

= Pw + δF � 0� t �

Bw = δg �

w = δ f � t = 0 �

The estimate (2.2) can now be applied to w:

��w��I � K(��δ f ��II + ��δF��III + ��δg��IV ) �

Hence, if K has a moderate size, small perturbations δ f � δF� δg in the data cause a
small perturbation w in the solution.

As an example, consider a scalar problem in one space dimension and 0� x� 1.
Then u = u(x� t)� F = F(x� t)� g = g(t)� f = f (x), and we choose

��u��2I = ��u(�� t)��2 =
� 1

0
�u(x� t)�2dx �

If the boundary conditions are

u(0� t) = g0(t) �
u(1� t) = g1(t) �

then a typical estimate has the form

��u(�� t)��2 � K
�
�� f (�)��2 +

� t

0
��F(��τ)��2dτ +

� t

0

��g0(τ)�2 + �g1(τ)�2�dτ
�
�

where K may depend on t, but not on f � F� g0� g1. We could of course reformulate
this estimate as in (2.2), but it is more convenient to keep the squared norms.

If the domain in space doesn’t have any boundaries, there is of course no bound-
ary condition. However, for a difference approximation, there has to be boundaries
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for computational reasons. A special, but frequent case, is that the solutions are pe-
riodic in space. In that case the computation is done in a bounded domain, with the
requirement that the solution and all its derivatives are equal at the both ends of the
interval. This is often used as a model problem, since Fourier analysis can be used
for investigating stability.

For periodic problems, the solution can be written as a Fourier series, and the
behavior of the coefficients is the key issue. Let v(x) = [v(1) v(2) � � � v(m)]T be a 2π-
periodic vector function. The following lemma connects the size of these coeffi-
cients with the L2-norm of v(x), which is defined by

��v(�)��2 =
� 2π

0
�v(x)�2dx � �v�2 =

m

∑
�=1

�v(�)�2 �

Lemma 2.1. (Parseval’s relation) ) Let v(x) be represented by its Fourier series

v(x) = 1	
2π

∞

∑
ω=�∞

v̂(ω)eiωx �

Then

��v(�)��2 =
∞

∑
ω=�∞

�v̂(ω)�2 �

�

As an example, consider the heat equation in its simplest form

ut = uxx � 0� x� 2π � 0� t �

u(x�0) = f (x) �
(2.4)

The solution can be written as a Fourier series with time dependent coefficients

u(x� t) = 1	
2π

∞

∑
ω=�∞

û(ω � t)eiωx � (2.5)

and the coefficients satisfy

ût =�ω2û �

û(ω �0) = f̂ (ω) �

where f̂ (ω) are the Fourier coefficients of the initial data. The solution is

û(ω � t) = e�ω
2t f̂ (ω) �

and by Parseval’s relation

��u(�� t)��2 =
∞

∑
ω=�∞

�û(ω � t)�2 �
∞

∑
ω=�∞

� f̂ (ω)�2 = �� f (�)��2 �
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Here we have proven well-posedness by simply finding the explicit form of the
solution.

Assume next, that we want to solve the heat equation backward

ut = uxx � 0� x� 2π � 0� t � T �

u(x�T ) = φ(x) �

By the variable transformation τ = T � t� v(x�τ) = u(x� t) = u(x�T � τ), we get

vτ =�vxx � 0� x � 2π � 0� τ � T �

v(x�0) = φ(x) �

By the same procedure as above, we obtain

v̂(ω �τ) = eω
2τ φ̂ (ω) �

It is now impossible to obtain an estimate of the type

��v(��τ)�� � K��φ(�)�� �

where K is a constant, since

��v(��τ)��2 =
∞

∑
ω=�∞

e2ω2τ �φ̂(ω)�2 �

This shows that, given a measured heat distribution at a given time T , it is in theory
impossible to find the true heat distribution at an earlier time, except for very smooth
φ with fast decaying Fourier coefficients. The problem is ill posed . In practice it
means, that it is extremely difficult to get any reasonable accuracy at t = 0, since
small errors in the measurements give rise to large errors in the solution. (It should
be said that there are numerical methods for ill posed problems, but a discussion of
those is outside the scope of this book.)

2.2 Periodic Problems and Fourier Analysis

In this section we shall discuss the so called Cauchy problem , i.e., the domain
in space is the whole real line. However, for convenience we will assume that the
solutions are 2π-periodic in space, i.e., u(x� t) = u(x + 2π � t), such that we can deal
with a finite interval [0�2π ]. When the concept Cauchy problem is used a few times
in the text, it refers either to the periodic case or to the case where u(x� t) = 0 outside
some finite interval in space.

We begin by considering the PDE problem before discretization.
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2.2.1 The PDE Problem

Consider the general problem in one space dimension

∂u
∂ t

= P(∂�∂x)u + F(x� t) � 0� t �

u(x�0) = f (x) �
(2.6)

where P(∂�∂x) is a linear differential operator , i.e.,

P(∂�∂x)(αu + v) = αP(∂�∂x)u + P(∂�∂x)v �

if α is a constant. Before defining well-posedness, we consider the example

ut = Aux � u =
�

u(1)

u(2)

�
� A =

�
0 4
1 0

�
�

The matrix A can be diagonalized, i.e., there is a similarity transformation such that

T�1AT =Λ =
�

2 0
0 �2

�
�

where

T =
�

1 1
1�2 �1�2

�
� T�1 =

�
1�2 1�2
1�2 �1�2

�
�

By the substitution v = T�1u� g = T�1 f , we get the new system

vt =Λvx �

v(x�0) = g(x) �

with the solution

v(1)(x� t) = g(1)(x + 2t) �
v(2)(x� t) = g(2)(x�2t) �

The norm is defined by

��v(�� t)��2 =
� 2π

0
�v(x� t)�2dx � �v(x� t)�2 = �v(1)(x� t)�2 + �v(2)(x� t)�2 �

and we have the inequality

��T v��=
�� 2π

0
�T v�2dx

�1�2 �
�� 2π

0
�T �2�v�2dx

�1�2
= �T � � ��v��2 �

where �T � is the matrix norm defined by
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�T �= max
�v�=1

�T v� �

By periodicity it follows that

� 2π

0
�g(�)(x�2t)�2dx =

� 2π

0
�g(�)(x)�2dx �

and we get

��u(�� t)�� � �T � � ��v(�� t)��= �T � � ��g(�)��= �T � � ��T�1 f (�)�� � �T � � �T�1� � �� f (�)�� �

Since the matrix A is not symmetric, the condition number K = �T � � �T�1� is greater
than 1, but the estimate

��u(�� t)�� � K�� f (�)��
is the best one we can get.

Next, consider the trivial example ut = αu, where α is a positive constant. Obvi-
ously the solution satisfies

��u(�� t)��= eαt �� f (�)�� �

These two examples indicate that the following definition of well-posedness is ap-
propriate:

Definition 2.1. The problem (2.6) is well posed if for F(x� t) = 0 there is a unique
solution satisfying

��u(�� t)�� � Keαt �� f (�)�� � (2.7)

where K and α are constants independent of f (x). �

If the forcing function F is nonzero, one can show that for a well posed problem,
the estimate

��u(�� t)�� � Keαt
�
�� f (�)��+

� t

0
��F(��τ)��dτ

�
(2.8)

holds. This is a useful estimate, and it means that the forcing function can be disre-
garded in the analysis. The norm �� � ��III in (2.2) is defined by

��F ��III =
� t

0
��F(��τ)��dτ �

For the simple examples treated so far, the existence of solutions is a trivial matter,
in fact we have constructed them. However, questions concerning existence of solu-
tions in the general case is beyond the scope of this book. Uniqueness, on the other
hand, follows immediately from the condition (2.7). Assume that there is another
solution v of the problem (2.6). Then by linearity, the difference w = u� v satisfies
the initial value problem
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∂w
∂ t

= P(∂�∂x)w � 0� t �

w(x�0) = 0 �

The condition (2.7) then implies that w = 0, i.e., v = u.
Next we shall discuss how to verify that the estimate (2.7) holds. In the previous

section we saw how the problem (2.4) was converted into a simple set of ordinary
differential equations by the Fourier transform, i.e., after writing the solution as a
Fourier series. The operator ∂�∂x2 becomes�ω2 acting on the Fourier coefficients
û. Let us now apply this technique to general problems in one space dimension.
Consider the problem (2.6), where P(∂�∂x) is a differential operator with constant
coefficients . This means that it has the form

P(∂�∂x) =
q

∑
�=0

A�

∂�

∂x�
�

where the matrices A� are independent of x and t. By writing the solution as a
Fourier series of the form (2.5), the vector coefficients are obtained as

û(ω � t) = eP̂(iω)t f̂ (ω) �

where

P̂(iω) =
q

∑
�=0

A�(iω)� �

Note that if u is a vector with m components, i.e., there are m differential equations in
(2.6), then P̂(iω) is an m
m matrix, and it is called the symbol or Fourier transform
of P(∂�∂x) .

By Parseval’s relation, we get

Theorem 2.1. The problem (2.6) is well posed if and only if there are constants K
and α such that for all ω

�eP̂(iω)t � � Keαt � (2.9)

�

It is often easier to study the eigenvalues of a matrix rather than the norm. We have

Definition 2.2. The Petrovski condition is satisfied if the eigenvalues λ (ω) of P̂(iω)
satisfy the inequality

Re
�
λ (ω)

�� α � (2.10)

where α is a constant independent of ω . �

Clearly this condition is necessary for stability. There are many ways of prescribing
extra conditions such that it is also sufficient for well-posedness. One such condition
is given by

Theorem 2.2. The Petrovski condition is necessary for well-posedness. It is suffi-
cient if there is a constant K and a matrix T (ω) such that T�1(ω)P̂(iω)T (ω) is
diagonal and �T�1(ω)� � �T (ω)� � K for all ω . �
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Problems in several space dimensions are treated in the same way. By defining the
vectors

x = [x(1) x(2) � � � x(d)]T �
ωωω = [ω(1)ω(2) � � � ω(d)]T �

the symbol P̂(iωωω) is well defined by the formal transition ∂�∂x(�) � iω(�). For
example, when using the more common notation x = x(1)� y = x(2), the differential
operator �

1 0
0 1

�
∂
∂x

+
�

0 1
1 0

�
∂
∂y

has the symbol

P̂(iωωω) = i

�
ω(1) ω(2)

ω(2) ω(1)

�
�

The two theorems above now hold exactly as stated with the generalized definition
of ω �ωωω .

The symbol in our example has purely imaginary eigenvalues, which implies that
the Petrovski condition is satisfied with α = 0. Furthermore, since P̂(iωωω) is skew-
Hermitian, i.e., (P̂�(iωωω) =�P̂(iωωω)), it can be diagonalized by a unitary matrix. This
implies that the conditions of Theorem 2.2 are satisfied (with K = 1 and α = 0),
which makes the Petrovski condition sufficient for well-posedness.

General first order systems have the form

∂u
∂ t

=
d

∑
�=1

A�

∂u

∂x(�) � (2.11)

and they are quite common in applications. They are called hyperbolic if the symbol

P̂(iω) = i
d

∑
�=1

A�ω(�)

has real eigenvalues and can be diagonalized by a matrix T (ωωω) with bounded con-
dition number. Obviously, the Petrovski condition is satidfied for such systems.

If the PDE system doesn’t have constant coefficients A� , then the Fourier analysis
cannot be applied in a straightforward way as was done above. If A� = A�(x), and
the Fourier series is formally inserted, we get equations where the coefficients û(ωωω)
depend also on x, and it doesn’t lead anywhere. The analysis can still be based on
Fourier technique, but the theory becomes much more involved (see [Hörmander,
1985]), and we don’t discuss it further here. (For difference approximations we shall
briefly indicate what can be done.)
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2.2.2 Difference Approximations

The discretization in time is done on a uniform grid tn = nk � n = 0�1� � � � � where k
is the step size. Consider first the classic simple approximation of (2.4)

un+1
j = Qun

j � j = 0�1� � � � �N �

u0
j = f j � j = 0�1� � � � �N �

(2.12)

where Q = I + kD+D�. The solution can be expanded in a finite Fourier series

un
j = 1	

2π

N�2

∑
ω=�N�2

ûn
ωeiωx j �

where, for convenience, it is assumed that N is even. The coefficients are obtained
by

ûn
ω = 1	

2π

N

∑
j=0

un
je
�iωx j h �

which is called the Discrete Fourier Transform (DFT), often called the Fast Fourier
Transform (FFT), which refers to the fast algorithm for computing it. The Fourier

series is plugged into (2.12), and since the grid functions �eiωx j�N�2
ω=�N�2 are linearly

independent, we obtain

ûn+1
ω eiωx j = Qûn

ωeiωx j = (I + kD+D�)ûn
ωeiωx j = (1�4λ sin2 ξ

2
)ûn

ωeiωx j �

where ξ =ωh� λ = k�h2. The function Q̂(ξ ) = 1�4λ sin2 ξ
2 is called the (discrete)

Fourier transform of the difference operator Q, and we have

ûn+1
ω = Q̂ûn

ω � (2.13)

Instead of having a difference operator acting on the whole grid function un
j , we have

obtained a very simple scalar equation for each Fourier component. The obvious
condition for nongrowing solutions is

�Q̂(ξ )� � 1 � �ξ � � π � (2.14)

and it is satisfied if and only if λ � 1
2 .

Going back to the physical space, we introduce the discrete norm

��un��2h =
N

∑
j=0

�un
j �2h � (2.15)

In analogy with Lemma 2.1 we have
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Lemma 2.2. (The discrete Parseval’s relation ) Let v j be represented by its Fourier
series

v j = 1	
2π

N�2

∑
ω=�N�2

v̂ωeiωx j �

Then

��v��2h =
N�2

∑
ω=�N�2

�v̂ω �2 � �

By using the discrete Parseval’s relation it follows from (2.14) that

��un+1��2h =
N�2

∑
ω=�N�2

�ûn+1
ω �2 =

N�2

∑
ω=�N�2

�Q̂ûn
ω �2 �

N�2

∑
ω=�N�2

�ûn
ω �2 = ��un��2h �

and by repeating this inequality for decreasing n, we obtain the final estimate

��un��h � �� f ��h
in analogy with the continuous case.

Let us next consider the same problem, but with a lower order term added:

ut = uxx +αu � α � 0 �

The difference scheme is (2.12), but now with Q = I + kD+D�+αkI. By doing the
same analysis as above, we arrive at

ûn+1 = (1�4λ sin2 ξ
2

+αk)ûn � �ξ � � π �

and the best estimate we can obtain for all ξ is

�ûn+1� � (1 +αk)�ûn� �

This leads to

��un��2h � (1 +αk)2n�� f ��2h � e2αnk�� f ��2h = e2αtn �� f ��2h �

Referring back to the discussion of well-posedness above, this growth corresponds
to the growth of the solution to the differential equation itself for the special case
f =const., i.e., f̂ (ω) = 0 for ω = 0. The solution to the differential equation is
u = eαt if f � 1. Hence, we cannot expect any better estimate.

In order to include such lower order terms in the class of problems we want to
solve, it is reasonable to generalize the stability definition to

��un��h � eαtn �� f ��h �


