Nano- and Micromechanics of Polymers - Structure Modification and Improvement of Properties

von: Goerg H. Michler, Francisco J. Baltá-Calleja

Carl Hanser Fachbuchverlag, 2012

ISBN: 9783446428447 , 586 Seiten

Format: PDF, OL

Kopierschutz: Wasserzeichen

Windows PC,Mac OSX geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Online-Lesen für: Windows PC,Mac OSX,Linux

Preis: 239,99 EUR

Mehr zum Inhalt

Nano- and Micromechanics of Polymers - Structure Modification and Improvement of Properties


 

Table of Contents

6

Preface

12

List of Abbreviations

16

I Aim and methods

20

1 General Importance of Polymers and Trends

22

1.1 Relevance of Polymeric Materials

22

1.2 Materials Science Aspects

24

1.3 Molecular and Supramolecular Structures

26

1.3.1 Molecular Structures

26

1.3.2 Supramolecular Structures, Morphology

32

1.4 Polymer Modification

40

1.4.1 Copolymers

41

1.4.2 Polymer Blends

43

1.4.3 Particulate Composites

47

1.4.4 Short Fiber Reinforced Polymers

49

1.4.5 Conclusions

50

2 Methods and Investigation Techniques

54

2.1 Methods of Structure and Morphology Analysis

54

2.1.1 Macroscale Methods

54

2.1.1.1 X-Ray Diffraction Techniques (WAXS, SAXS)

54

2.1.1.2 Other Scattering Techniques

58

2.1.1.3 Spectroscopic Techniques and Thermal Methods

59

2.1.2 Local, Microscopic Methods

68

2.1.2.1 Optical Microscopy (OM)

69

2.1.2.2 Confocal Scanning Optical Microscopy

71

2.1.2.3 Scanning Electron Microscopy (SEM)

71

2.1.2.4 Transmission Electron Microscopy (TEM)

75

2.1.2.5 Atomic Force Microscopy (AFM)

78

2.1.2.6 Comparison of Microscopic Techniques

80

2.2 Methods of Nano- and Micromechanical Analysis

82

2.2.1 Macroscale Methods

82

2.2.1.1 Scattering (Diffraction) Methods

82

2.2.1.2 Interference Optics

83

2.2.1.3 Spectroscopic Techniques (Rheo-Optical Methods)

83

2.2.1.4 Other Techniques

85

2.2.2 Local (Microscopic) Methods

85

2.2.2.1 Overview

85

2.2.2.2 In-Situ Microscopy

89

2.3 Mechanical “Micro-Testing”

99

2.3.1 Mechanical Testing of Micro-Sized Specimens

101

2.3.2 Microindentation Tests

103

2.3.2.1 Imaging Method

103

2.3.2.2 Basic Aspects of Microindentation: Contact Geometry

104

2.3.2.3 Depth Sensing Measurements

105

II General mechanisms of deformation and fracture

114

3 Deformation Phenomena and Mechanisms

116

3.1 Basic Types of Mechanical Behavior

116

3.2 Influence of Specimen Size

122

3.3 Deformation Mechanisms

127

3.4 Molecular Parameters and Mechanisms

129

3.4.1 Molecular Mobility and Entanglements

129

3.4.2 Molecular Micro-Mechanisms

134

4 Crazing

138

4.1 The Phenomenon of „Craze“

138

4.2 Characteristics of Crazes

140

4.3 Variety of Craze Structures

144

4.4 Craze Initiation

153

4.4.1 Formation of Pre-Crazes

154

4.4.2 Transformation of Pre-Crazes into Fibrillated Crazes

159

4.5 Craze Growth and Fracture

161

4.5.1 Length Growth

161

4.5.2 Thickness Growth

162

4.5.3 Craze Fracture

164

4.6 Factors Influencing Craze Initiation and Growth

166

4.7 Structure Initiated Crazes

172

5 Fracture Phenomena and Mechanisms

178

5.1 Overview

178

5.2 Principles of Brittle Fracture of Polymers

179

5.3 Stress Concentrations at Particles and Voids

184

5.3.1 Soft Particles

185

5.3.2 Hard Particles

189

5.3.3 Thermal Stresses

189

5.3.4 Energetic Effects

191

5.3.5 Stress Concentration Effects in Different Particle/Void Arrangements

192

5.3.5.1 Particle/Void Size

192

5.3.5.2 Particle/Void Distance

193

5.4 Toughness Enhancing Mechanisms

194

5.5 Fracture Surface Analysis and Damage Analysis

197

III Main groups of polymer materials

202

6 Amorphous Polymers

204

6.1 Overview

204

6.2 Amorphous Homopolymers

207

6.2.1 Polystyrol (PS)

207

6.2.1.1 Deformation Characteristics

207

6.2.1.2 Modification of Crazes

212

6.2.2 Polymethylmethacrylate (PMMA)

215

6.2.3 Polyvinylchloride (PVC)

217

6.2.4 Polycarbonate (PC)

218

6.2.5 Other Amorphous Homopolymers

223

6.3 Copolymers

223

6.3.1 Styrene-Acrylonitrile-Copolymers (SAN)

223

6.3.2 Cyclic Olefin Copolymers (COC)

224

6.4 Comparison of Crazes

228

6.5 Resins, Thermosets

230

7 Semicrystalline Polymers

234

7.1 Overview

234

7.2 General Deformation Mechanisms

237

7.2.1 Brittle Behavior

238

7.2.1.1 Initiation of Brittle Fracture by Morphological Defects

238

7.2.1.2 Brittle Fracture of Low Molecular Weight Materials

240

7.2.1.3 Brittle Fracture at Low Temperatures

243

7.2.1.4 Environmental Stress Crazing/Cracking

243

7.2.1.5 Physical Ageing

244

7.2.2 Craze-Like Mechanisms

244

7.2.2.1 Crazing at Low Temperatures

244

7.2.2.2 Crazing at Brittle Fracture Above Tg,am

245

7.2.2.3 Environmental Crazing

247

7.2.2.4 Crazing under Plastic Deformation

249

7.2.2.5 Formation of Chevron Pattern

251

7.2.3 Ductile Behavior

254

7.2.3.1 Plastic Deformation of Spherulites

254

7.2.3.2 Deformation on the Amorphous/Lamellar Level

256

7.2.3.3 Strain Hardening and Self-Reinforcement

261

7.2.4 Deformation of Crystals and Lamellae

261

7.2.5 Self-Reinforcement and High Strength Materials

263

7.2.5.1 Oriented Structures by Melt Processing

263

7.2.5.2 Oriented Structures by Solution(Gel)-Spinning

265

7.3 Examples

266

7.3.1 Polyethylenes

266

7.3.1.1 Influence of Molecular Weight

266

7.3.1.2 Influence of Chain Architecture: Branching

269

7.3.1.3 Influence of Processing

273

7.3.2 Polypropylenes

274

7.3.2.1 Influence of Molecular Weight

274

7.3.2.2 Crystalline Modification

277

7.3.2.3 Influence of the Deformation Temperature

284

7.3.2.4 Additional Effects

286

7.3.3 Polyamides

287

7.3.4 Polyurethanes

289

7.3.5 Polyethylene Terephthalate (PET)

289

7.3.6 Syndiotactic Polystyrene

290

7.3.7 Fluoropolymers: PTFE, PVDF

292

7.3.8 Comparison of different polymers

293

8 Polymer Blends

300

8.1 Overview

300

8.2 Thermoplastic/Thermoplastic Blends

303

8.2.1 Blend Formation

303

8.2.2 Morphology

303

8.2.3 Micromechanical Properties

304

8.2.3.1 Blends of Amorphous Polymers

304

8.2.3.2 Blends of Amorphous and Semicrystalline Polymers

308

8.2.3.3 Blends of Semicrystalline Polymers

313

8.3 Rubbers and Elastomers

318

8.3.1 Overview

318

8.3.2 Typical Morphology

321

8.3.3 Micromechanical Behavior

324

8.4 Inclusion Yielding

328

9 Rubber Toughened Polymers

334

9.1 Overview

334

9.2 Morphology

336

9.3 Basic Micromechanical Mechanisms

339

9.3.1 Survey of Micromechanical Behavior

339

9.3.2 Rubber Particle Volume Content

347

9.3.3 Rubber Particle Modulus

350

9.3.4 Grafting Influence (Interfacial Bonding)

351

9.3.5 Particle Size

352

9.3.6 Additional Factors

359

9.4 Disperse Systems

361

9.4.1 Disperse Systems with Amorphous Matrix

361

9.4.2 Disperse Systems with Semicrystalline Matrix

370

9.5 Rubber Network Systems

379

10 Composites

388

10.1 Overview

388

10.2 Particle-Reinforced Polymer Composites

389

10.2.1 Morphology of Particle-Filled Polymers

389

10.2.2 Micromechanical Effects

391

10.2.2.1 Composites with a Tough Matrix (PE, PP)

391

10.2.2.2 Composites with a Stiff Matrix

402

10.2.2.3 Conclusion

403

10.3 Nanoparticle Polymer Composites

404

10.3.1 Overview and General Dependences

404

10.3.2 Micromechanical Effects in Different Classes of Nanocomposites

408

10.3.2.1 Zero-Dimensional Filler Nanoparticles (POSS)

408

10.3.2.2 One-Dimensional Carbon Nanotubes (CNT)

409

10.3.2.3 Two-Dimensional Layered Particles

414

10.3.2.4 Three-Dimensional Filler Particles

418

10.4 Fiber-Reinforced Polymer Composites

424

10.4.1 Overview

424

10.4.2 General Micromechanical Effects

425

11 Nanostructured Polymers

434

11.1 Overview

434

11.2 Block Copolymers

435

11.2.1 Introduction

435

11.2.2 Diversity in Morphologies and Properties

436

11.2.3 Micromechanical Behavior of Block Copolymers

443

11.2.4 Functional BCPs and Nanocomposites

455

11.2.5 Microdeformation Behavior in Block Copolymer/Polystyrene Blends

459

11.2.5.1 Blends Containing Macrophase-Separated PS Particles

459

11.2.5.2 Blends with Oriented Layers

460

11.2.5.3 Blends with Droplet Morphologies

462

11.2.6 Microhardness vs. Micromechanical Mechanisms

465

11.2.7 Mechanism of Chevron Formation

468

11.3 Coextruded Multilayered Polymers

470

11.3.1 Overview of Microlayered Composites and Coextrusion Technology

470

11.3.2 Structure-Property Correlations in Multilayered Composites Comprising Amorphous Polymers

476

11.3.3 Multilayered Crystalline/Amorphous Polymer Combinations

487

11.3.4 Multilayered Crystalline/Crystalline Polymer Combinations

494

11.4 Nanofibers

496

11.4.1 Overview

496

11.4.2 Electrostatic Spinning (Electrospinning)

497

11.4.3 Typical Fiber Structures

498

11.4.3.1 Fibers with Porous Structures

498

11.4.3.2 Fibers with Beads and Ribbon-Like Structures

499

11.4.3.3 Fibers with Helical and Twisted Structures

500

11.4.3.4 Fibers with Rough Surfaces

501

11.4.3.5 Fibers with Core Sheath Structures

502

11.4.4 Mechanical Properties of Polystyrene (PS) Nanofibers

503

11.4.5 Nanofibers – Nanocomposites

507

11.5 Conclusions

508

12 Special Forms and Applications

520

12.1 Overview, Special Forms

520

12.2 Hot Compacted Oriented Films/Fibers

522

12.2.1 Overview

522

12.2.2 Hot Compacted Oriented Fibers

524

12.2.3 Hot Compacted Oriented Films

528

12.2.4 Conclusions

531

12.3 Biomedical Polymers

531

12.3.1 UHMWPE

533

12.3.1.1 Morphology and Properties of UHMWPE

533

12.3.1.2 Application of UHMWPE in Hips and Knee Joints

538

12.3.2 Polymethylmethacrylate (PMMA)

545

12.3.3 Bioresorbable Polymers

548

12.3.4 Bone Substitutes

551

12.3.5 Electrospun Nanofibers

554

12.3.5.1 Nanofibrous Scaffolds for Tissue Engineering of Skin

554

12.3.5.2 Dentistry Applications

555

12.3.5.3 Scaffolds for Bone Tissue Engineering

557

12.4 Biopolymers

558

Index

576